

UNIVERZITET U KRAGUJEVCU PRIRODNO–MATEMATIČKI FAKULTET

Marko R. Antonijević

ANTIOKSIDATIVNI POTENCIJAL NOVOSINTETISANIH BENZOHIDRAZIDSKIH DERIVATA 4-HIDROKSIKUMARINA

doktorska disertacija

Kragujevac, 2024.

Marko R. Antonijević

ANTIOXIDATIVE POTENTIAL OF NEWLY-SYNTHESIZED BENZOHYDRAZIDE DERIVATIVES OF 4-HYDROXYCOUMARIN

Doctoral Dissertation

Kragujevac, 2024

Identifikaciona stranica doktorske disertacije

Autor
Ime i prezime: Marko Antonijević
Datum i mesto rođenja: 26.05.1995. Novi Pazar, Srbija
Sadašnje zaposlenje: Istraživač saradnik na Institutu za Informacione
Tehnologije Univerziteta u Kragujevcu
Doktorska disertacija
Naslov: Antioksidativni potencijal novosintetisanih benzohidrazidskih
derivata 4–hidroksikumarina
Broj stranica: 199
Broj slika: 91
Broj bibliografskih podataka: 162
Ustanova i mesto gde je rad izrađen: Prirodno-matematički fakultet,
Univerzitet u Kragujevcu
Naučna oblast (UDK): Hemija-Organska hemija (547)
Mentor: titula, ime i prezime, zvanje, naziv fakulteta/instituta i
univerziteta
Komentori:
Prof. dr Zoran Marković, redovni profesor, Departman za prirodno-ma-
tematičke nauke, Državni Univerzitet u Novom Pazaru.
Dr Edina Avdović, viši naučni saradnik, Institut za informacione tehno-
logije, Univerzitet u Kragujevcu.
Broj i datum odluke Veća univerziteta o prihvatanju teme doktorske
disertacije:
Broj odluke: IV-01-754/5, datum: 12.10.2022.

Zahvalnica

Istraživanja u okviru ove doktorske disertacije sprovedena su na Institutu za hemiju, Prirodnomatematičkog fakulteta, Univerziteta u Kragujevcu i Institutu za informacione tehnologije, Univerziteta u Kragujevcu, pod mentorstvom prof. dr Zorana Markovića, redovnog profesora Departmana za prirodno-matematičke nauke, Državnog Univerziteta u Novom Pazaru i dr Edine Avdović, višeg naučnog saradnika Instituta za Informacione tehnologije, Univerziteta u Kragujevcu. Želim izraziti duboku zahvalnost komentorima za izvanrednu podršku i vođenje tokom izrade ove disertacije. Vaša stručnost, strpljenje i posvećenost su mi bili neizmerne pomoći tokom ovog istraživačkog putovanja. Vaša mentorstva su me usmeravala prema jasnim ciljevima, podsticala su moj intelektualni rast i inspirisala me da postignem svoj maksimum i malo više od toga. Hvala vam što ste podelili svoje znanje, iskustvo i strast prema istraživanju sa mnom. Ovo iskustvo će ostati duboko ukorenjeno u mom profesionalnom i ličnom razvoju. Srećan sam što sam imao priliku učiti od vas i raditi zajedno sa vama.

Takođe, veliku zahvalnost dugujem predsedniku komisije dr Dejanu Milenkoviću, naučnom savetniku Instituta za Informacione tehnologije, Univerziteta u Kragujevcu, za nesebičnu pomoć i veoma korisne sugestije i komentare koji su značajno uticali na kvalitet ove doktorske disertacije. Posebnu zahvalnost dugujem članu komisije, dr Dušici Simijonović, višem naučnom saradniku Instituta za Informacione tehnologije, Univerziteta u Kragujevcu, za svesrdnu podršku tokom izrade i tumačenja rezultata koji su ušli u okvire ove doktorske disertacije. Izuzetnu zahvalnost takođe dugujem ostalim članovima komisije, dr Vladimiru Petroviću, vanrednom profesoru Prirodno–matematičkog fakulteta, Univerziteta u Kragujevcu, dr Dušanu Dimiću, docentu Fakulteta za fizičku hemiju, Univerziteta u Beogradu i dr Miroslavu Živiću, vanrednom profesoru Biološkog fakulteta, Univerziteta u Beogradu, koji su svojim stručnim sugestijama i savetima značajno doprineli kvalitetu ove disertacije.

Posebnu zahvalnost dugujem prof. dr Svetlani Marković na nesebičnoj pomoći u radu na rezultatima u okviru ove disertacije. Veliku zahvalnost dugujem i prof. dr Goranu Kaluđeroviću, od koga sam, za vreme boravka u Merseburgu (Nemačka), naučio mnoge nove tehnike i metode, od kojih je veliki broj primenjen u okviru istraživanja u ovoj disertaciji. Izuzetnu zahvalnost dugujem kolegi, dr Žiku Milanoviću, koji je krajnje nesebično i prijateljski učestvovao u izradi, tumačenju i prezentaciji rezultata objavljenih u okviru ove doktorske disertacije. Sa dubokim poštovanjem, izražavam svoju zahvalnost dragim kolegama i prijateljima s Instituta za informacione tehnologije Kragujevac i Istraživačko–razvojnog centra za bioinženjering (BioIRC), osobito dr Jeleni Đorović Jovanović, dr Svetlani Jeremić, dr Miljanu Miloševiću, dr Bogdanu Milićeviću i dr Vladimiru Simiću, za izvanrednu podršku i kolegijalnost koju su mi pružili tokom izrade ove doktorske disertacije.

Veliku zahvalnost dugujem i svojoj porodici, posebno roditeljima Rusomiru i Biljani, ali i braći Lazaru, Milošu i Stefanu, kao i sestri Eleni, na ogromnoj podršci, razumevanju mojih ambicija, rečima ohrabrenja kada sam se suočavao s najvećim izazovima i ogromnoj radosti za sve postignute uspehe.

I na kraju, ne mogu zanemariti da su mi izrada ove doktorske disertacije i moje putovanje u Merseburg, indirektno pružili priliku da upoznam svoju voljenu suprugu, Anu. Njena prisutnost i neizmerna podrška tokom celog procesa izrade disertacije, davali su mi snagu da nastavim kad više nisam mogao sâm.

Dedicatum futuro meo heroi!

Marko R. Antonijević

Sažetak

U okviru ove doktorske disertacije opisana je sinteza novih benzohidrazidskih derivata 4-hidroksikumarina, kao i višestepeno ispitivanje njihove antioksidativne aktivnosti. Jedinjenja su dobijena procedurom koja podleže principima zelene sinteze, ekstenzivnoj strukturnoj karakterizaciji zatim podvrgnuta primenom а instrumentalnih i računarskih metoda baziranih na teoriji funkcionala gustine. Visok stepen korelacije između eksperimentalnih i simuliranih spektralnih podataka ukazuje na precizno definisanje struktura novosintetisanih derivata. Rezultati ispitivanja antioksidativnog kapaciteta in vitro testovima pokazali su da ispitivani derivati koji poseduju tri OH grupe vezane za fenolni prsten pokazuju najveći antioksidativni potencijal. Ovi rezultati su takođe bili u dobroj korelaciji sa izračunatim termodinamičkim parametrima. Pokazalo se da je SPLET dominantan mehanistički put inaktivacije najvećeg broja radikalskih vrsta, i u polarnoj i nepolarnoj sredini, osim pri inaktivaciji hlorovanih metil-peroksi radikala gde se SPLET i HAA nalaze u kompeticiji. Najpovoljniji položaj za reakciju sa slobodnim radikalima, u većini slučajeva je azot na hidrazidnom mostu, zbog čega je za ispitivanje kinetike korišćen 4-hidroksikumarinbenzohidrazid (CBH1), kako bi se isključio uticaj sporednih reakcija. Detaljnim ispitivanjem izračunatih kinetičkih parametara, u sinergiji sa eksperimentalnim rezultatima, postavljen je novi mehanizam antiradikalske aktivnosti, SPLET-RRC, a jedinjenje koje nastaje u reakciji CBH1 i HO• je pokazalo nižu toksičnost u odnosu na polazne supstance. Vrednosti farmakokinetičkih parametara karakterišu novosintetisana jedinjenja potencijalnim kandidatima za buduća ispitivanja u cilju njihove primene kao farmaceutskih ili dijetetskih suplemenata.

Ključne reči: Kumarini, DFT, antioksidativna aktivnost, redoks status, ADMET analiza.

Summary

This doctoral dissertation describes the synthesis, extensive structural characterization of new benzohydrazide derivatives of 4-hydroxycoumarin, as well as the multi-step examination of their antioxidant activity by experimental and computational methods. The compounds were obtained by a procedure aligned with the principles of green synthesis, and then subjected to extensive structural characterization using structural instrumental methods, as well as computational methods based in the density functional theory. The high degree of correlation between experimental and simulated spectral data indicates a precise definition of the structure of the newly synthesized benzohydrazide derivatives. By comparing the antioxidant capacity using *in vitro* tests, it was shown that the investigated derivatives possessing three OH groups attached to the phenolic ring show the highest antioxidant capacity. These results were also highly correlated with thermodynamic calculations. It was shown that SPLET is the dominant mechanistic pathway of inactivation of the largest number of radical species, both in polar and non-polar environments, except for the inactivation of chlorinated methyl-peroxyl radicals where SPLET and HAA are in competition. The most favourable position for reaction with free radicals, in most cases, is the nitrogen on the hydrazide bridge, which is why the 4-hydroxycoumarinbenzohydrazide (CBH1) was used for the kinetics test, in order to exclude the influence of side reactions. A detailed examination of the kinetic parameters, in synergy with the experimental results, established a new multi-stage mechanism of SPLET-RRC antiradical activity, and the compound formed in the reaction of the CBH1 and HO• was shown to have lower toxicity compared to the starting substance. The values of the pharmacokinetic parameters characterize the newly synthesized compounds as potential candidates for future studies aimed at their application as pharmaceutical or dietary supplements.

Keywords: Coumarins, DFT, antioxidant activity, Redox status, ADMET analysis.

Sadržaj

1. OPŠTI DEO	
1.1. Oksidativni stress – "Pandorina kutija zla"	1
1.1.1. Slobodni radikali	2
1.1.2. Reaktivne vrste kiseonika	3
1.1.2.1. Hidroksi radikal	5
1.1.2.2. Superoksid radikal–anjon	6
1.1.2.3. Askorbil–radikal	7
1.2. Antioksidanti	7
1.2.1. Podele antioksidanata	8
1.2.2. Prirodni i sintetički antioksidanti. Fenoli	9
1.2.2.1. Karboksilne kiseline sa aromatičnim ostatkom. Fenolne kise	eline10
1.2.3. Kumarini	15
1.2.3.1. Podela kumarinskih derivata	16
1.2.3.2. Biološka aktivnost kumarinskih derivata	19
1.2.3.3. Derivati 4–hidroksikumarina	21
1.2.4. Definisanje antioksidativnog i antiradikalskog potencijala jed	injenja 23
1.2.4.1. Odnos strukture i reaktivnosti antioksidanata	23
1.2.4.2. Eksperimentalne metode za definisanje antioksidativnog po24	otencijala
1.2.4.3. Računarske metode za ispitivanje antioksidativnog potencij	ala25
1.2.4.3.1. Teorija prelaznog stanja	26
1.2.4.3.2. Markusova teorija	26
1.2.5. Mehanizmi antioksidativnog delovanja	28
1.3. Farmakokinetika benzohidrazidskih derivata 4-hidroksikumari	na31
2. EKSPERIMENTALNI DEO	
2. Sinteza benzohidrazidskih derivata kumarina	34
2.1. Hemikalije i reagensi	34
2.2. Sinteze	35
2.2.1. Procedura sinteze 3–acetil–4–hidroksikumarina i benzoilhidrazio	la35
2.2.2. Sinteza benzohidrazidskih derivata 4-hidroksikumarina	

2.3. Strukturna karakterizacija novosintetisanih benzohidrazidskih derivata 4-
hidroksikumarina CBH1–CBH9
2.3.1. Rendgenska strukturna analiza
2.3.2. Spektroskopske metode
2.3.3. Računarske metode42
2.4. Eksperimentalni testovi za određivanje antioksidativnog potencijala43
2.4.1. Redukcija 2,2–difenil–1–pikrilhidrazil radikala – DPPH test43
2.4.2. Redukcija 2,2'–azino–bis(3–etilbenzotiazolin–6–sulfonske kiseline) – ABTS
test
2.4.3. Određivanje sposobnosti redukcije jona gvožđa – FRAP test44
2.4.4. Sposobnost inaktivacije hidroksi radikala – EPR merenja44
2.5. Eksperimentalni testovi za određivanje redoks statusa45
2.5.1. Određivanje koncentracije superoksid radikal anjona (O2•-)45
2.5.2. Određivanje koncentracije malondialdehida (MDA)45
2.5.3. Određivanje koncentracije redukovanog glutationa (GSH)46
3. REZULTATI I DISKUSIJA48
3.1. Strukturne osobine novosintetisanog 3,4,5,–trimetoksibenzohidrazidskog derivata 4–hidroksikumarina – CBH9
3.1.1. Rendgenska strukturna i DFT analiza strukturnih parametara CBH949
3.1.2. Ispitivanje stabilnosti pomoću molekulske dinamike
3.2. Analiza spektralnih osobina CBH953
3.2.1. Analiza NMR spektralnih podataka CBH9 i određivanje najboljeg teorijskog modela za simulaciju NMR spektara53
3.2.2. Analiza vibracionih (IR) spektara CBH9 55
3.2.2. Analiza UV–Vis spektralnih podataka za CBH9 56
3.3. Ispitivanje strukturnih parametara CBH1–CBH858
3.3.1. Analiza i opis strukturnih parametara CBH1–CBH8 58
3.4. Analiza spektralnih osobina CBH1–CBH861
3.4.1. Analiza NMR spektralnih podataka CBH1–CBH861
3.4.2. Analiza vibracionih (IR) spektara CBH1–CBH865
3.4.3. UV–Vis spektri i globalni parametri reaktivnosti CBH1–CBH867

3.5. <i>In vitro</i> antioksidativna aktivnost novosintetisanih benzohidrazidskih derivata 4–hidroksikumarina CBH1–CBH9
3.5.1. Ispitivanje antiradikalske aktivnosti CBH1–CBH9 – DPPH test69
3.5.2. Ispitivanje antiradikalske aktivnosti CBH1–CBH9 – ABTS i FRAP testovi 70
3.6. <i>In silico</i> antioksidativna aktivnost novosintetisanih benzohidrazidskih derivata 4–hidroksikumarina CBH1–CBH972
3.6.1. Termodinamička ispitivanja antioksidativnog potencijala CBH1–CBH972
3.6.1.1. Entalpija disocijacije veze i afinitet prema protonu
3.6.1.2. Jonizacioni potencijal74
3.6.1.3. Mehanizam antioksidativnog delovanja CBH1–CBH9 na osnovu dobijenih termodinamičkih parametara koji opisuju antioksidativni potencijal75
3.6.1.3.1. Kadikali i anjoni ispitivanin benzonidrazidskih derivata CBHI-CBH9
3.6.2. Termodinamička ispitivania antiradikalske aktivnosti CBH1–CBH9 77
3.6.1.1. Inaktivacija hidroksi radikala
3.6.1.2. Inaktivacija ostalih radikalskih vrsta
3.6.1.3. Mehanizam inaktivacije radikalskih vrsta
3.6.1.3.1. SPLET i HAA mehanistički put
3.6.2. Kinetička ispitivanja antiradikalske aktivnosti; Postuliranje SPLET–RRC mehanizma
3.6.2.1. EPR pri različitim pH vrednostima84
3.6.2.1.1. Određivanje pKa vrednosti CBH1 84
3.6.2.2. Ispitivanje mehanizama antioksidativnog delovanja
3.6.3. In vitro antioksidativna aktivnost novosintetisanih CBH8 i CBH9 – Redoks status
3.6.3.2. Merenje koncentracije superoksid radikal-anjona ($O_2^{\cdot-}$)
3.6.3.3. Merenje koncentracije malonaldehida (MDA)95
3.6.3.4. Merenje koncentracije glutationa (GSH)95
3.7. Predviđeni toksikološki profil CBH1–CBH9 i CBH1–OH96
3.8. Farmakokinetički parametri CBH1–CBH997
3.8.1. Drug–likeness i biodostupnost97
3.8.2. Fizičko–hemijski parametri biodostupnosti99

3.8.3. ADME analiza farmakokinetičkih parametara	100
3.9. Transport CBH1–CBH9 pomoću albumina	101
3.9.1. Spektroflourimetijska metoda	102
3.9.2. In silico ispitivanje interakcija CBH9 i HSA	104
3.9.3. Ispitivanje interakcija ostalih novosintetisanih derivata sa HSA	106
3.9.3.1. Molekulski doking	106
3.9.3.2. Molekulska dinamika	108
4. ZAKLJUČAK	111
5. LITERATURA	115
PRILOG A	129
PRILOG B	173
BIOGRAFIJA	184

1. OPŠTI DEO

1.1. Oksidativni stress – "Pandorina kutija zla"

Kada je reč o temama koje su definisale nauku dvadesetog veka, "slobodni radikali" se nalaze na samom vrhu liste. Izjava poznatih naučnika Džona Gatridža i Berija Halivela (*John Gutteridge and Barry Halliwell*) kojom tvrde: "*Teško je ovih dana otvoriti popularni naučni ili medicinski časopis, a da ne vidite članak o ulozi slobodnih radikala u različitim bolestima*" podjednako je istinita danas kao što je bila i 1994. godine. Jedan od pionira u ovoj oblasti, Earl R. Stadtman (*Earl R. Stadtman*) započeo je pre više od 40 godina poseban istraživački program sa ciljem da ispita uticaj slobodnih radikala na aktivnost enzima i proteina i razvio je metode za praćenje proteina izmenjenih od strane slobodnih radikala. Rezultati njegovih istraživanja privukli su veliki broj istraživača iz različitih oblasti da ispitaju slobodne radikale, njihove reakcije i efekte na organizam, okolinu i materiju uopšte [1].

Nekontrolisano stvaranje slobodnih radikala može izazvati stanje koje se u modernoj nauci naziva "oksidativni (oksidacioni) stres" (OS), koji može inicirati oštećenja ćelijskih struktura i doprineti razvoju bolesti kao što su kancer, kardiovaskularne bolesti i neurološki problemi. Prema Halivelu i Gatridžu, u trenutku kada količina proizvedenih slobodnih radikala prevaziđe kapacitet odbrambenog antioksidativnog sistema da ih neutrališe, nastaje stanje oksidativnog stresa. OS izaziva narušavanje strukture bioloških komponenti kao što su DNK, lipidi i proteini, što može dovesti do oštećenja ćelija i njihove smrti [1-4]. Da bi sprečili oštećenja izazvana prekomernim stvaranjem slobodnih radikala, organizmi su razvili sofisticirane antioksidativne odbrambene sisteme koji se, pored enzima i unutrašnje antioksidativne zaštite, delimično oslanjaju na antioksidante, odnosno supstance koje imaju potencijal da inaktiviraju slobodne radikale. Nešto preciznija definicija antioksidanata glasi: "Svaka supstanca koja, kada je prisutna u niskim koncentracijama u poređenju sa koncentracijama supstrata koji se može oksidovati, značajno usporava ili inhibira oksidaciju tog supstrata naziva se antioksidantom" [2-4]. Antioksidanti su, dakle supstance, koje pomažu organizmu da zadrži stanje redoks homeostaze. Održavanje redoks homeostaze je od suštinskog značaja za normalno funkcionisanje ćelija, jer disbalans u oksidacionim i redukcionim procesima dovodi do pojave OS-a.

Većina antioksidanata koji se danas koriste prvenstveno su izolovani iz biljaka. Zbog nemogućnosti da menjaju lokaciju "po volji", biljkama je bilo potrebno da razviju sisteme proizvodnje jedinjenja koja su im omogućavala da se odupru stresorima sredine u kojoj se nalaze [5–7]. Ljudi su prilično brzo shvatili da biljke proizvode supstance koje ih štite od štetnih uticaja spoljašnjeg sveta i tako je nastala "tradicionalna medicina" koja koristi biljke i njihove ekstrakte u lečenju mnogih bolesti. Zahvaljujući tehnološkoj i industrijskoj revoluciji, naučnici su u poslednjih 100 godina uspeli da identifikuju brojne molekule odgovorne za različite biološke ili fiziološke funkcije u biljnim ekstraktima, a zatim da ih modifikuju ili primene u modernoj medicini ili u neke druge svrhe [6–9].

Kumarini predstavljaju jednu od najvećih grupa prirodnih jedinjenja, izolovanih uglavnom iz biljaka. Mogu se naći u različitim biljnim vrstama kao i u različitim delovima same biljke. Zbog svoje specifične reaktivnosti i strukturne raznovrsnosti derivata, ova jedinjenja su postala poznata po tome što imaju širok spektar različitih bioloških i fizioloških uloga i funkcija, među kojima se ističe dobar antioksidativni potencijal [10–12].

1.1.1. Slobodni radikali

Slobodni radikali su hemijske vrste koje sadrže jedan ili više nesparenih elektrona, što ih čini nestabilnim i veoma reaktivnim vrstama, sposobnim da brzo reaguju sa okolinom i uzrokuju oštećenje ćelijskih i međućelijskih struktura. Ove hemijske vrste mogu nastati kao produkt metaboličkih procesa, a neretko se javljaju i kao posledica izlaganja zračenju, zagađenju i drugim stresorima iz okoline [1, 2].

Utvrđeno je da slobodni radikali imaju fundamentalnu ulogu u velikom broju biohemijskih procesa i predstavljaju esencijalni deo prvenstveno aerobnog, ali i anaerobnog metabolizma u živim organizmima. Na primer, usled specifične hemijske prirode i velike raznovrsnosti, oni predstavljaju komponente vitalne za kontrolu međućelijske komunikacije, metaboličkih procesa, imunskog odgovora na strane supstance i niza drugih funkcija. S druge strane, ako se stvaraju u višku, oni mogu izazvati ozbiljna oštećenja biomolekula u okruženju i sprečiti ih da ostvare svoje važne biohemijske i fiziološke funkcije. Hronična izloženost ovoj vrsti oštećenja indukuje različite bolesti, od kojih mnoge kulminiraju mutacijama i odumiranjem ćelija, a neretko i samog tkiva. Prekomerno stvaranje slobodnih radikala često je izazvano spoljašnjim faktorima kao što su različite vrste zračenja, prisustvo teških metala ili neki drugi tip promene u normalnim metaboličkim putevima ćelije, što dovodi do stanja OS-a. Kao što je već pomenuto, OS predstavlja pojavu nekontrolisane produkcije slobodnih radikala koja premašuje odbrambene kapacitete organizma, što dovodi do oštećenja okolnih biomolekula. Smatra se da je veliki broj široko rasprostranjenih bolesti, uključujući kancer, probleme kardiovaskularnog sistema, hipertenziju, različite inflamatorne procese i neurodegenerativne poremećaje kao što su Alchajmerova i Parkinsonova bolest, rezultat dugotrajnog izlaganja organizma izvoru OS-a [1-5].

Takođe, slobodni radikali su često primarni i sekundarni proizvodi procesa koji se naziva autooksidacija. U ovom procesu, organski molekuli se oksiduju molekulima kiseonika, ne samo u živim sistemima, već i u uljima, plastici, gumi, hrani, vinu itd. [13]. Proces autooksidacije je važan jer se često koristi za proizvodnju određenih organskih molekula i igra važnu ulogu u nekim metaboličkim procesima. Prisustvo molekula kiseonika u biološkim sistemima često dovodi do stvaranja superoksid radikal anjona (O₂•-). Generalno, reakcije autooksidacije su spore jer molekul O₂ u osnovnom, tripletnom stanju, nije visoko reaktivan, ali sa pojavom superoksid radikal anjona, reakcija se inicira i brzina procesa autooksidacije se tada naglo povećava [5–7,13]. Ove reakcije obično su katalizovane prisustvom metalnih jona, prisustvom

izvora zračenja ili nekim drugim načinom pobuđivanja elektrona iz molekula kiseonika.

U biološkim sistemima, Fe²⁺ jon inicira proizvodnju superoksid radikal anjona što kao posledicu ima oksidaciju hemoglobina. Kompleks hemoglobina koji nastaje u ovom procesu nije u stanju da veže molekule kiseonika, već se mora razložiti u jetri. Procenjuje se da se u zdravom ljudskom organizmu, kao posledica normalnih metaboličkih procesa, dnevno oksiduje oko 3% hemoglobina [13].

Biomolekuli koji se nađu u okruženju inicijatora slobodno-radikalskih reakcija, intermedijera koji mogu postati radikali, ili samih slobodnih radikala, često učestvuju u lančanim reakcijama koje za proizvode imaju različite alkoksi (RO•) i peroksi (ROO•) radikalske vrste (gde R predstavlja vodonik ili neki organski ostatak). Pored toga, radikalske vrste (R•) (posrednici u organskim reakcijama, itd.) reaguju sa molekulima kiseonika dajući ROO• koji je nestabilan i lako prelazi u RO•. Konstante brzina ovih reakcija veće su ili ekvivalentne brzini difuzije (109 M⁻¹ s⁻¹). Organski peroksidi (ROOH) su obično stabilni na sobnoj temperaturi, a lako se razlažu zagrevanjem, izlaganjem UV zračenju ili u prisustvu prelaznih metala, stvarajući odgovarajuće slobodne radikale [10–13]. Hemijske vrste kao što su O2^{•-}, ROOH, RO[•] i ROO[•] nazivaju se reaktivne vrste kiseonika (*Reactive Oxigen Species* – **ROS**) usled činjenice da im je spinska gustina lokalizovana u najvećoj meri na atomu kiseonika čineći ga aktivnim centrom mnogih radikalskih reakcija. Pored ROS u literaturi se nalaze i druge reaktivne vrste koje umesto kiseonika kao aktivni centar imaju ugljenik (Reactive Carbon Species – RCS), azot (Reactive Nitrogen Species – RNS) ili sumpor (Reactive Sulphur Species - RSS), ali u okviru ove doktorske disertacije fokus će biti na inaktivaciji najzastupljenije grupe reaktivnih radikalskih vrsta, ROS.

1.1.2. Reaktivne vrste kiseonika

Tokom evolucije, prelaskom sa anaerobnog na aerobni način života živi organizmi se sreću sa problemom izlaganja potencijalno opasnim oksidacionim procesima. Kiseonik je omogućio aerobnim organizmima značajnu prednost kada je u pitanju upotreba i iskorišćenje energetskih rezervi, ali je u isto vreme i došlo do pojave ROS što je imalo za posledicu ispoljavanje negativnih efekata na ćelije [2–4,13–15].

Naime, najveći deo kiseonika koji se unese u organizam na kraju dospeva do mitohondrija u kojima učestvuje u procesu oksidativne fosforilacije (Slika 1.1.) u kome se molekulski kiseonik (O₂) konvertuje u molekul vode (H₂O), a energija dobijena u ovom procesu se koristi u sintezi energetske monete adenozin–trifosfata (ATP–a). Usled narušavanja već slabih interakcija između enzima elektron–transportnog lanca i elektrona koji učestvuju u procesu redukcije molekula kiseonika do vode, često dolazi do formiranja "nepoželjnih" ROS–a. Zbog toga se najznačajnim izvorom ROS u organizmu smatra elektron–transportni lanac koji je zadužen za proces oksidativne fosforilacije [13–16]. Pored oksidativne fosforilacije, proces u kom se takođe proizvodi velika količina ROS–a jeste proces fagocitoze, u kom učestvuje velika količina kiseonika. Na kraju, kao što je već pomenuto, unošenjem i metabolisanjem lekova,

pesticida, teških metala, kao i izlaganjem zračenju ili drugim stresorima iz okruženja narušavaju se biohemijski procesi u ćeliji što dovodi do hiperprodukcije ROS.

Slika 1.1. Ilustrovani prikaz elektron transportnog lanca sa komponentama zaduženim za proces oksidativne fosforilacije na membrani mitohondrije u eukariotskoj ćeliji. Kompleks I predstavlja NADPH dehidrogenazu, Kompleks II sukcinat dehidrogenazu, Kompleks III citohrom bc1 kompleks, a Kompleks IV citohrom c oksidazu. ATP sintaza predstavlja poseban deo lanca koji se u nekoj literaturi naziva i Kompleks V [13–16]

Kao što je već pomenuto ROS mogu da interaguju sa esencijalnim ćelijskim komponentama kao što su nezasićene masne kiseline, proteini i nukleinske kiseline. U manjoj meri, ugljovodonici takođe mogu biti meta njihovog napada. Membranski lipidi veoma su osetljivi na napad slobodnih radikala. U ovim reakcijama nastaju novi radikali koji pokreću lančanu reakciju peroksidacije lipida. Mnogi toksični, neželjeni proizvodi nastaju tokom peroksidacije lipida inicirane slobodno radikalskim vrstama. Novonastali proizvodi mogu delovati kao "sekundarni glasnici" na lokacijama daleko od mesta gde su inicijalno formirani. Bitno je naglasiti da reakcije peroksidacije lipida uzrokuju nepovratno oštećenje funkcije ćelije [2–4,13–16].

Oksidacija proteina, kada je uslovljena prisustvom ROS, proizvodi relativno slabo stabilne i nestabilne proizvode kao što su proteinski hidroperoksidi [17]. Oni proizvode nove radikale kao rezultat interakcije sa jonima prelaznih metala. Vremenom se oksidovani proteinski proizvodi mogu akumulirati, doprinoseći ubrzanom starenju i razvoju različitih bolesti [2–4,17].

Radikali mogu reagovati molekulima ribonukleinskih i sa i dezoksiribonukleinskih kiselina (RNK i DNK) i to na dva načina: prvi način jeste interakcija sa purinskim i pirimidinskim bazama, dok drugi predstavlja apstrakciju atoma vodonika iz molekula šećera. Dvostruka veza pirimidina je posebno osetljiva na napad hidroksi radikala (HO[•]), što dovodi do formiranja velikog broja različitih štetnih proizvoda kao što su tiamin-glikol, uracil-glikol, 5-hidroksideoksiuridin, 5hidroksideoksicitidin i hidantoin. Purinske baze reaguju sa HO• da bi proizvele 8hidroksideoksiguanozin, 8-hidroksideoksiadenozin, formamidopirimidin i druge manje zastupljene oksidacione proizvode [16-18]. Kada je reč o ugljovodonicima, radikali nasumično otkidaju vodonikov atom od nekih atoma ugljenika, što dovodi do nastajanja radikala kod kojih je slobodan elektron lokalizovan na ugljenikovom atomu.

1.1.2.1. Hidroksi radikal

Hidroksi radikal najčešće nastaje kao rezultat homolitičkog raskidanja veza u molekulima koje je izazvano jonizujućim i ultraljubičastim (*Ultraviolet* – UV) zračenjem, kao i enzimskim aktivnostima u organizmu. Vrlo brzo nakon nastanka hidroksi radikal reaguje sa molekulima u okolini, i to neselektivno, sa konstantama brzine koje su bliske brzini difuzije. Pretpostavlja se da je više od 60% oštećenja u mišićima, koja se javljaju nakon delovanja jonizujućeg zračenja, izazvano reakcijama u koje je uključen hidroksi radikal [19].

Hidroksi radikal može nastati u reakcijama Fentonovog tipa (1.1 i 1.2), a u prisustvu jona gvožđa i bakra takođe je moguća Haber–Vajsova (*Haber–Weiss*) rekombinacija (1.3) [19,20]. Redukovani oblici metala uglavnom se podvrgavaju Fentonovoj reakciji (1.1,1.2):

$$Fe(II) + H_2O_2 \longrightarrow Fe(III) + HO^- + HO^-$$
(1.1)

$$Cu(I) + H_2O_2 \longrightarrow Cu(II) + HO^- + HO^-$$
(1.2)

Haber-Vajsova rekombinacija može se prikazati na sledeći način:

$$O_2^{-} + H_2O_2 \longrightarrow O_2 + HO^{-} + HO^{-}$$
 (1.3)

(1)

Ovako prikazana reakcija nije biološki značajna jer se odvija veoma sporo. Kada je prisutan metalni jon, Haber–Vajsova reakcija se može predstaviti kao proces u dva koraka, od kojih je prvi redukcija metalnog jona i stvaranje molekulskog kiseonika (jednačine 1.4 i 1.5), a drugi je identičan Fentonovoj reakciji. Metalni jon deluje kao katalizator u ovom procesu i može učestvovati u stvaranju velikog broja hidroksi–radikala čak i pri niskim koncentracijama [19–20].

$$Fe(III) + O_2^{-} \longrightarrow Fe(II) + O_2$$
(1.4)

$$Cu(II) + O_2^{-} \longrightarrow Cu(I) + O_2$$
(1.5)

Oksidovani oblici gvožđa i bakra su češći u biološkim sistemima pri čemu se redukcija može desiti i sa drugim molekulima. Obe reakcije posledično zavise od helirajućih liganada, pH vrednosti medijuma i enzimske aktivnosti u okruženju [19–20]. Fentonova reakcija se takođe dešava u citohromu P450 mitohondrija, pa je zbog toga od krucijalne važnosti ispitati interakcije potencijalnih antioksidanata sa ovim enzimima, što će biti jedna od tema poglavlja o farmakokinetici ispitivanih jedinjenja [16,21].

1.1.2.2. Superoksid radikal–anjon

Često se kaže da je najvažniji izvor superoksid radikal–anjona elektron transportni lanac. Superoksid radikal–anjon nastaje kao sporedni metabolički proizvod u organizmu posredstvom *nikotinamid adenin dinukleotid fosfat* (*Nicotinamide adenine dinucleotide phosphate* – **NADP**) oksidaze, ksantin oksidaze ili peroksidaze koje omogućavaju i regulišu prenos elektrona u π^* orbitalu molekulskog kiseonika. Tako se formira kiseonična vrsta koja je u svim svojim oblicima i varijatetima visoko reaktivna [13]. Oblik u kom se superoksid radikal–anjon nalazi zavisi od fizičkih i hemijskih karakteristika medijuma, a pre svega pH vrednosti. Na primer, u kiseloj sredini superoksid radikal–anjon može biti protonovan čak do hidroperoksi radikala (1.6), koji daljim transformacijama daje hidroksi radikal. Važno je napomenuti da je superoksid radikal–anjon neophodan akter elektron transportnog lanca i redoks reakcija koje se javljaju u mitohondrijama, a u nekim slučajevima, odnosno, u određenoj koncentraciji, proizvodnja superoksid radikal–anjona usporava proces starenja ćelije [13]. Imajući to u vidu, inaktivacija superoksid radikal–anjona često dovodi do proizvodnje radikalskih vrsta, što posledično izaziva oksidativni stres.

$$\mathrm{H}^{+} + \mathrm{O}_{2}^{-} \longrightarrow \mathrm{HO}_{2}^{\cdot} \tag{1.6}$$

Superoksid radikal–anjon je sposoban da redukuje metalne jone i pokrene Fentonovu reakciju (1.7).

$$Fe^{3+}(Cu^{2+}) + O_2^{-} \longrightarrow Fe^{2+}(Cu^+) + O_2$$
 (1.7)

Superoksid radikal–anjon može se transformisati u molekule kiseonika i vodonik peroksida preko reakcije disproporcionisanja (1.8).

$$\dot{O_2}/H\dot{O_2} + \dot{O_2}/H\dot{O_2} \longrightarrow H_2O_2 + O_2$$
 (1.8)

Takođe, veoma je bitno naglasiti da formiranje superoksid radikal–anjona, hidroperoksi radikala i vodonik peroksida nije nepovoljno po organizam samo usled njihove neposredne reaktivnosti već i zbog mogućnosti da se oni razlože do mnogo reaktivnije čestice — hidroksi radikala [13,16,21].

1.1.2.3. Askorbil–radikal

Posebno interesantan predstavnik ROS–a, askorbil–radikal, proizvodi se tokom reakcija u kojima se askorbinska kiselina koristi kao antioksidant (Šema 1.1). U reakciji sa kiseonikom u prisustvu određenih enzima i katalizatora, askorbinska kiselina može se ponašati kao antioksidant ili prooksidant [22].

Šema 1.1. Reakcija inaktivacije radikalske vrste u prisustvu kiseonika pomoću anjona askorbinske kiseline — nastanak askorbil–radikala

Askorbil–radikal predstavlja glavni proizvod¹ svih reakcija sa slobodnim radikalima u kojima učestvuje askorbinska kiselina. Ova hemijska vrsta ima poseban EPR spektar, koji je otkriven u velikom broju metaboličkih procesa askorbinske kiseline. Predloženo je da se zbog toga, kao i zbog prisustva u tkivima, koristi kao biomarker oksidativnog stresa. Koncentracija askorbil–radikala može rasti prilikom povišene izloženosti pesticidima, vodonik peroksidu, ili usled intoksikacije toksinima hemijskog ili biološkog porekla [22].

1.2. Antioksidanti

Knjiga o korenju i travama pod nazivom "Pen Tsao" autora Šen Nonga (*Shen Nong*) koja je napisana 2900 godine p.n.e. se smatra najstarijom farmakopejom na svetu. U njoj je dat opis 365 biljnih lekova, od kojih su mnogi u upotrebi i danas [28]. Tretmani biljnim materijalima su dugo vremena predstavljali nezamenljiv i gotovo jedini vid lečenja različitih bolesti. Mnogi lekovi u modernoj medicini, kao što je na primer morfin koji se dobija zasecanjem čaura maka i koristi se kao moćan analgetik, vode poreklo iz tradicionalne medicine. Veliki broj biljnih vrsta koje se i danas koriste u različite svrhe, u svojim ekstraktima, pored specifičnih lekova i agenasa, sadrže veliki

¹ Ispitivanje puteva inaktivacije radikalskih vrsta nastalih iz molekula antioksidanta biće jedan od glavnih fokusa ove doktorske disertacije, ali više o tome biće reči u nekom od narednih poglavlja.

procenat fenolnih derivata koji su karakteristični po svom antioksidativnom kapacitetu [5–12,28].

Takođe, zanimljiva pojava poznata pod nazivom "francuski paradoks", odnosi se na činjenicu da stanovnici južne Francuske u značajno manjoj meri oboljevaju od kardiovaskularnih bolesti iako se njihova ishrana sastoji u najvećem procentu od hrane bogate holesterolom i zasićenim mastima. Međutim, francuski paradoks moguće je objasniti činjenicom da ljudi koji žive na prostoru južne Francuske konzumiraju određene količine kvalitetnog vina, koje je bogato različitim prirodnim antioksidantima [29].

1.2.1. Podele antioksidanata

Termin "antioksidanti", u širem smislu, ne podrazumeva samo jedinjenja sposobna da inaktiviraju slobodne radikale, već i jedinjenja koja na druge načine mogu sprečiti oštećenja nastala oksidativnim procesima. Zbog toga kada govorimo o **antioksidativnom kapacitetu** jedinjenja ne govorimo samo o njegovoj **antiradikalskoj aktivnosti**, već i o inhibitornom ili agonističkom delovanju prema određenim enzimima, kao i interakcijama sa metalnim jonima, u cilju sprečavanja inicijacije oksidativnog stresa [1–5,27–31].

Prema načinu delovanja, antioksidante (u širem smislu) možemo podeliti na enzimske i neenzimske. U grupu enzimskih antioksidanata svrstavaju se pet glavnih enzima: *superoksid dizmutaza* (SOD), *katalaza* (CAT), *glutation peroksidaza* (Gpx), *glutation reduktaza* (GR) i *glutation–S–transferaza* (GST). Ovih pet enzima predstavljaju takozvanu primarnu liniju antioksidativne zaštite i svojim prisustvom zadržavaju nisku koncentraciju slobodno radikalskih vrsta u ćelijama [30,31]. Njihova aktivnost reguliše se posebnim mehanizmima na molekulskom nivou. Ovi mehanizmi će ipak ostati samo pomenuti u ovoj doktorskoj disertaciji, jer je njen fokus na takozvanim neenzimskim antioksidantima (antioksidanti u užem smislu) i mehanizmima prema kojima oni ispoljavaju svoje dejstvo. Neenzimski antioksidanti predstavljaju prirodne ili sintetičke supstance koje su sposobne da inaktiviraju radikalske vrste. Ovo je od posebnog značaja kada produkcija slobodnih radikala prevaziđe kapacitete primarnog nivoa antioksidativne zaštite. Zbog toga se ove supstance često nazivaju i sekundarnim nivoom antioksidativne zaštite [27–31].

Takođe, značajna podela antioksidanata jeste i prema mestu na kom se nalaze, odnosno proizvode, na **endogene, egzogene i metaloproteine**. U endogene antioksidante spadaju bilirubin, različiti tioli kao što su glutation, NADPH, NADH, zatim ubihinon (poznatiji kao koenzim Q₁₀), mokraćna kiselina i različiti enzimi. Egzogene antioksidante najčešće predstavljaju antioksidanti koji se nalaze u hrani a to su: vitamini, karotenoidi, oksikarotenoidi i polifenoli, dok u metaloproteine spadaju ceruloplazmin, feritin, mioglobin i transferin [1–5, 27–31].

1.2.2. Prirodni i sintetički antioksidanti. Fenoli.

U odnosu na poreklo, antioksidanti se mogu podeliti na prirodne i sintetičke antioksidante. Prirodni antioksidanti, dobijeni iz različitih botaničkih izvora kao što su voće, povrće, bilje i začini, poznati su po složenim hemijskim strukturama koje obuhvataju niz fitohemikalija, polifenola i flavonoida sa različitim supstituentima. Ova jedinjenja ne učestvuju u metabolizmu jedinke samo kao antioksidativni agensi, već poseduju niz drugih važnih fizioloških i bioloških svojstava i uloga. Nasuprot tome, sintetički antioksidanti predstavljaju jedinjenja dizajnirana u laboratorijskim uslovima sa ciljem da poboljšaju antioksidativna svojstva prirodnih analoga. Oni često poseduju relativno jednostavnu hemijsku strukturu i u naučnoj, ali i široj javnosti, često postoji zabrinutost u vezi sa njihovim potencijalnim dugoročnim uticajem na bezbednost i zdravlje ljudi, kao i uticaj na okolinu. Regulatorni okviri koji regulišu prirodne i sintetičke antioksidante se razlikuju, pri čemu su prirodni antioksidanti često integrisani u postojeće propise o hrani i suplementima, dok sintetički pandani mogu zahtevati različite procese odobrenja. Preference potrošača naginju prirodnim antioksidantima zbog njihove povezanosti sa holističkom ishranom, iako su efikasnost i bezbednost obe klase antioksidanata faktori koji zahtevaju sveobuhvatno istraživanje i konsultacije stručnjaka [7–12,32].

Najznačajnija grupa prirodnih antioksidanata jesu **fenolna jedinjenja**. Svako jedinjenje koje u svojoj strukturi sadrži hidroksilnu grupu vezanu za aromatični prsten može se smatrati fenolnim jedinjenjem. Na šemi 1.2 predstavljena je detaljna klasifikacija ove grupe prirodnih jedinjenja [31–34]:

Šema 1.2. Klasifikacija fenolnih jedinjenja

Među prirodnim fenolnim jedinjenjima sa dobrim antioksidativnim potencijalom posebno se ističu *tokoferoli,* zatim *flavonoidi* i *fenolne kiseline* [30–34]. **Tokoferoli** se često smatraju najviše proučavanom grupom jedinjenja sa visokim antioksidativnim potencijalom. Zajedno sa tokotrienolima (koji se od tokoferola razlikuju po zasićenosti veza alifatičnog lanca) čine vitamin E kompleks. U okviru svake od ovih grupa jedinjenja nalaze se četiri osnovna izomera (α –, β –, γ – μ δ –) i prisutni su u najvećem broju prehrambenih proizvoda. Zbog izuzetno dobrih antioksidativnih osobina i činjenice da svoj antioksidativni potencijal ispoljavaju u mastima, tokoferoli su poznati kao veoma potentni antioksidativni agensi [33–35]. Zbog toga je vitamin E poznat i pod nazivom "eliksir mladosti" (Slika 1.2.) [36].

Slika 1.2. Struktura α -tokoferola – najaktivnijeg oblika vitamina E

Pored tokoferola, izuzetno dobar antioksidativni potencijal imaju i **flavonoidi** [37]. Flavonoidi predstavljaju veliku grupu prirodnih jedinjenja koja se nalaze u skoro svakoj biljci na planeti. Neretko biljke sadrže i više od 50 različitih flavonoida istovremeno, jer pored svog antioksidativnog potencijala ova jedinjenja često imaju i ispoljavaju druge biološke i fiziološke uloge. Smatra se da je u prethodnih nekoliko decenija izolovano više od 9000 različitih flavonoida [37]. Na sledećoj slici predstavljene su strukture nekih značajnih i široko zastupljenih jedinjenja iz ove grupe.

Slika 1.3. Strukture nekih značajnih jedinjenja iz grupe flavonoida

1.2.2.1. Karboksilne kiseline sa aromatičnim ostatkom. Fenolne kiseline

Pored tokoferola i flavonoida posebno važna grupa prirodnih jedinjenja sa visokim antioksidativnim potencijalom su **karboksilne** i **fenolne kiseline**. Ove grupe jedinjenja karakteristične su pre svega po prisustvu karboksilne ili estarske grupe. Kod fenolnih kiselina, pored karboksilne/estarske grupe na prstenu postoje vezane i hidroksilne grupe, koje omogućavaju dodatnu delokalizaciju nesparenih elektrona. Najjednostavniji predstavnici karboksilnih kiselina sa dobrim antioksidativnim kapacitetom su benzoeva i cimetna kiselina (Slika 1.4.).

Slika 1.4. Struktura benzoeve (levo) i cimetne (desno) kiseline

Pored toga što se nalaze u skoro svim biljkama koje se koriste u ishrani i tradicionalnoj medicini, za ova jedinjenja je karakteristično i to da se nalaze u svim delovima biljke, od semena, preko korena, stabla, do cveta i listova [37,38].

Kada se govori o antioksidativnom potencijalu fenolnih kiselina, u zavisnosti od strukture, mogu imati dobar, ali i izuzetan antioksidativni potencijal. Jedna od najaktivnijih fenolnih kiselina, kada je u pitanju antioksidativni potencijal, jeste 3,4,5– trihidroksibenzoeva kiselina, poznata i pod nazivom **galna kiselina**. Njena struktura je prikazana na Slici 1.5.

Slika 1.5. Struktura 3,4,5–trihidroksibenzoeve (levo) i 2,3,4–trihidroksibenzoeve (desno) kiseline

Pored antioksidativnog efekta 3,4,5-trihidroksibenzoeva kiselina poseduje i antifungalna i antiviralna svojstva [37,38]. Takođe, 3,4,5-trihidroksibenzoeva kiselina pokazala je obećavajući antikancerogeni potencijal prema određenim kancerogenim ćelijskim kulturama, sa zanemarljivim, skoro nepostojećim negativnim efektom zdravim ćelijama [34,37–42]. farmaceutskoj prema U industriji 3,4,5trihidroksibenzoeva kiselina se koristi kao polazni materijal u sintezi meskalina, psihoaktivnog alkaloida izolovanom iz kaktusa pejotlu (Slika 1.6.). Hajnrih Kliver (Heinrich Klüver) je sproveo jedno od prvih sveobuhvatnih istraživanja o efektima meskalina na Univerzitetu u Čikagu davne 1926. Nakon što je konzumirao meskalin, otkrio je da je teško gledati u beli zid, a da na njemu ne vidite blistave i sjajne oblike [38–40].

Slika 1.6. Kaktus pejotlu i meskalin – halucinogeni alkaloid izolovan iz ovog kaktusa

Pored 3,4,5–trihidroksibenzoeve kiseline, njen strukturni izomer 2,3,4– trihidroksibenzoeva kiselina, pokazuje nešto niži antioksidativni potencijal, usled negativnog induktivnog efekta karboksilne grupe i vodonične veze koju hidroksilna grupa u *orto* položaju gradi sa karbonilnim kiseonikom, čime se sprečava antioksidativna aktivnost hidroksilne grupe u ovom položaju. Na slici 1.5. data je struktura 2,3,4–trihidroksibenzoeve kiseline.

Jedan posebno zanimljiv derivat 3,4,5–trihidroksibenzoeve kiseline predstavlja i njen trimetoksi derivat, poznat pod nazivom **eudesminska kiselina** (3,4,5– *trimetoksibenzoeva kiselina*). Eudesminska kiselina je organsko jedinjenje koje se nalazi u mnogobrojnim biljkama, uključujući različite vrste iz rodova *Eucalyptus* i *Cupressus* [39–42].

Slika 1.7. Struktura eudesminske kiseline i list eukaliptusa iz koga je izolovana

Biološka aktivnost eudesminske kiseline pripisuje se njenoj hemijskoj strukturi (slika 1.7.), koja se sastoji od niza funkcionalnih grupa koje joj omogućavaju interakciju sa ćelijskim komponentama. Smatra se da ovo jedinjenje ispoljava svoje antifungalne i antibakterijske aktivnosti tako što razara ćelijsku membranu mikroorganizama, što dovodi do njihove smrti [40–42].

Prema istraživanjima, eudesminska kiselina ima potencijalne terapeutske prednosti u lečenju različitih infektivnih poremećaja. Dokazano je, na primer, da je efikasna protiv *Candida albicans*, vrste kvasca odgovorne za razne bolesti uključujući drozd i vaginalne gljivične infekcije. Štaviše, pokazalo se da je eudesminska kiselina efikasna protiv raznih patogena, uključujući *Staphilococcus aureus* i *Escherichia coli*. Eudesminska kiselina je takođe pokazuje antiinflamatorne i antioksidativne efekte [39–42]. Zbog ovih kvaliteta, može biti efikasan agens u lečenju inflamatornih poremećaja kao što su artritis i inflamatorna bolest creva [38–43].

Eudesminska kiselina je korišćena u tradicionalnoj medicini u mnogim kulturama širom sveta. Listovi eukaliptusa, na primer, korišćeni su u aboridžinskoj medicini za lečenje respiratornih i kožnih infekcija. Smatra se da su antifungalne i antibakterijske karakteristike eudesminske kiseline doprinele efikasnosti ovih tretmana [40–43].

Pored 3,4,5–trihidroksibenzoeve i 2,3,4–trihidroksibenzoeve kiseline, i kiseline sa dve hidroksilne grupe takođe imaju dobar antioksidativni potencijal. Posebno značajni predstavnici ove grupe su kiseline kod kojih se ove hidroksilne grupe nalaze u međusobnom susedstvu, a to su 3,4–dihidroksibenzoeva i 2,3–dihidroksibenzoeva

kiselina [44,45]. Njihove strukture, kao i struktura vanilinske (4–*hidroksi*–3–*metoksibenzoeve*) kiseline prikazane su na Slici 1.8.

Slika 1.8. Struktura 3,4–dihidroksibenzoeve (levo) 2,3–dihidroksibenzoeve (centar) i vanilinske (desno) kiseline

Sve ove kiseline pored antoksidativnog potencijala, ispoljavaju i druga fiziološka dejstva i često se mogu naći kao sastojci kozmetičkih proizvoda. Primenu nalaze u lečenju kožnih bolesti kao što je psorijaza, a mogu biti i proizvodi metabolizma drugih interesantan slučaj lekova [44-45]. Posebno predstavlja 4-hidroksi-3metoksibenzoeva kiselina [44-46]. Redukcijom vanilinske kiseline do aldehida, dobija se jedinjenje poznato pod nazivom vanilin (4-hidroksi-3-metoksibenzaldehid) [46-49]. Može se dobiti iz prirodnog zrna vanile ili sintetisati u laboratorijskim uslovima. Mahune vanile su plod orhideje vanile i pretežno se uzgajaju u tropskim oblastima, uključujući Madagaskar, Indoneziju i Tahiti. Ekstrakcija vanilina podrazumeva niz postupaka koji se sastoje od sušenja i usitnjavanja zrna. Sa druge strane, proizvodnja sintetičkog vanilina obično uključuje hemijsku proceduru u kojoj se gvajakol, sastojak prisutan u drvenoj pulpi, oksiduje uz pomoć različitih oksidanata. Sintetički vanilin koji se dobija u suštini se ne razlikuje od svog prirodnog ekvivalenta u smislu hemijskog sastava, ali je obično isplativiji i pogodniji za masovnu proizvodnju. Vanilin je aroma koja se u velikoj meri koristi u prehrambenoj industriji kako bi prehrambeni proizvodi imali slatki, kremasti i donekle cvetni miris i ukus. Koristi se u raznim prehrambenim proizvodima kao što su peciva, smrznuti deserti i pića. Pored toga, on poseduje i antioksidativno i antiinflamatorno dejstvo i poznat je po tome da umanjuje, pa čak i sprečava migrene i glavobolje [46–49].

Fenolne kiseline sa jednom hidroksilnom grupom ne poseduju dobar antioksidativni potencijal kao njihovi polihidroksilni analozi, ali zato poseduju niz drugih bioloških i fizioloških uloga i aktivnosti [50–53]. Na primer *o–hidroksibenzoeva kiselina*, poznata pod nazivom **salicilna kiselina**, je široko poznata po svojoj efikasnosti u ublažavanju bolova i upale, što je čini istaknutim terapeutskim agensom. Salicilna kiselina je često korišćena aktivna komponenta u brojnim analgeticima koji se izdaju bez recepta, kao što je aspirin (*acetilsalicilna kiselina*). Struktura salicilne kiseline i aspirina date su na sledećoj slici:

Slika 1.9. Struktura salicilne kiseline (levo), aspirina (desno)

Pored toga, salicilna kiselina i njeni derivati se primenjuju lokalno za lečenje različitih dermatoloških oboljenja, kao što su akne, psorijaza i bradavice [50–52]. Mehanizam delovanja salicilne kiseline uključuje inhibiciju sinteze prostaglandina, koji je odgovoran za ispoljavanje bola i upale. Takođe, pokazalo se da kada se salicilna kiselina koristi za piling kože i eliminisanje blokada pora, poboljšava se vizuelni aspekt akni i drugih kožnih oboljenja. Zbog toga su salicilna kiselina i njeni derivati, osim u medicinskoj upotrebi našli široku primenu u kozmetičkoj industriji [51,52].

Takođe, salicilna kiselina našla je svoju primenu u poljoprivredi kao regulator rasta biljaka i kao zaštita od biljnih patogena. Istraživanja su pokazala njenu sposobnost da promoviše rast određenih biljnih vrsta, dok istovremeno ometa rast drugih. Pored toga, pokazuje efikasnost u inhibiciji proliferacije gljivica i bakterija, koje imaju potencijal da izazovu patološke poremećaje biljaka i drugih organizama [50–54]. Pored *orto* izomera hidroksibenzoeva kiselina može postojati i u *meta* i *para* izomernom obliku. Na primer, *m–hidroksibenzoeva kiselina* ispoljava visoku antimikrobnu aktivnost, što je čini preovlađujućim izborom u konzervaciji hrane. Ovo jedinjenje se često koristi u konzerviranju proizvoda od mesa, kao i u pripremi sosova, preliva i začina. Istraživanja su pokazala sposobnost *m*–hidroksibenzoeve kiseline da spreči proliferaciju različitih mikroorganizama, uključujući bakterije, kvasac i plesni. Pored toga, *m*–hidroksibenzoeva kiselina nalazi primenu u sintezi različitih organskih jedinjenja, boja i mirisa [52–54].

Sa druge strane, *p*–*hidroksibenzoeva kiselina* takođe poseduje brojne industrijske i medicinske primene. Kao i *meta* analog benzoeve kiseline, i *p*–hidroksibenzoeva kiselina se često koristi kao sredstvo za očuvanje hrane, pored toga što služi kao osnovna komponenta u sintezi različitih hemijskih jedinjenja. Antimikrobna svojstva *p*–hidroksibenzoeve kiseline čine je moćnim konzervansom, koji se obično koristi u konzervaciji mlečnih proizvoda, gaziranih pića i pekarskih proizvoda. Pored toga, koristi se kao konzervans u kozmetici i proizvodima za ličnu negu, posebno u onima koji imaju vodene komponente, kao što su losioni, šamponi i kreme [51–54].

Kao i ostali strukturni analozi hidroksibenzoeve kiseline, p-hidroksibenzoeva kiselina poseduje i antiinflamatorne karakteristike i korišćena je u lečenju različitih inflamatornih oboljenja, uključujući reumatoidni artritis i inflamatornu bolest creva [51–55]. Za razliku od ostalih analoga, studije su pokazale da p-hidroksibenzoeva kiselina pokazuje potencijalnu primenu u oblasti nanotehnologije. Otkriveno je da ovo

jedinjenje poseduje sposobnost da funkcioniše kao redukciono sredstvo, što omogućava njegovu primenu u procesu sinteze metalnih nanočestica [55].

Ipak, bitno je naglasiti da se mali broj fenolnih kiselina u prirodi nalazi u slobodnom obliku. Većina njih je u organizmima biljaka smeštena u obliku estara, etara ili acetala koje grade sa drugim biljnim komponentama. Više reči o hidrazidnim derivatima ovih kiselina biće reči u nastavku ove doktorske disertacije.

1.2.3. Kumarini

Još jedna grupa prirodnih jedinjenja sa značajnim brojem različitih fizioloških i bioloških uloga i aktivnosti jesu **kumarini**. Oni predstavljaju veliku grupu heterocikličnih i aromatičnih jedinjenja koja nastaju kondenzacijom benzenovog i pironskog prstena. Zahvaljujući strukturi poznati su i pod nazivom **benzopironi**. Proučavanje kumarina i njegovih derivata započelo je pre nešto više od dva veka, kada je 1820. godine iz ploda biljke *Coumarouna odorata (Dipetryx odorata),* od strane Vogela (*A. Vogel*) izolovan 2*H*–*hromen*–2–*on*. Ovo jedinjenje je danas poznato pod nazivom **kumarin**, koji potiče od imena biljke iz koje je izolovan (*coumarou*–drvo; jezik južnoameričkih Indijanaca iz Francuske Gvajane) [56] (Slika 1.10.).

Slika 1.10. *Coumarouna odorata* – plod biljke iz kog je izolovan kumarin (levo), struktura izolovanog kumarina (desno)

Derivati kumarina su veoma rasprostranjeni u prirodi, posebno u biljnom svetu, odakle je izolovano više od 1300 molekula sa kumarinskom osnovom [56]. Ova jedinjenja su lokalizovana u različitim delovima biljaka koje pripadaju porodicama *Rutaceae, Umbeliferae, Compositae, Lumigonesae, Moraceaei* [56,57]. Njihova uloga u pomenutim biljnim vrstama je veoma različita, ali je često nedovoljno razjašnjena. Neki derivati kumarina su uključeni u regulaciju rasta, fotosintezu i kontrolu disanja, a za neke se može reći da imaju ulogu fitoaleksina, jer ih biljke sintetišu u funkciji odbrane od patogenih infekcija. Osim u biljkama, kumarini se proizvode i u nekim mikroorganizmima, pa čak i životinjama [56–58].

Derivati kumarina pokazuju širok spektar fizioloških efekata, zbog čega se biljni ekstrakti koji ih sadrže često koriste protiv crevnih obojenja, tifusa i leukemije. Oni pokazuju antikoagulativno, antibakterijsko, antifungalno, antivirusno, antihiperglikemijsko, anti–HIV i antikancerogeno dejstvo [56–60].

Zagrevanjem kumarina dobijaju se dikumaroli, koji su poznati kao jaki antikoagulantni agensi, a igraju i važnu ulogu u sintezi vitamina D. Dikumarol je 1941. godine prvi put testiran na ljudima (Slika 1.11.).

Slika 1.11. Struktura dikumarola

Ovo jedinjenje postaje komercijalno dostupno 1944. godine, a Link (*Link*) predstavlja ovo jedinjenje kao lek protiv koagulacije krvi, što ga uvodi u kliničku praksu već 1950. godine. Koristio ga je američki predsednik Dvajt Ajzenhauer (*Dwight Eissenhower*) u lečenju infarkta miokarda, što samo po sebi govori o njegovoj važnosti u medicini tog vremena [58–61].

Osim u farmakološke svrhe, kumarini se koriste kao aditivi u hrani, u parfemima, kozmetici, sredstvima za optičko izbeljivanje i raspršivanje fluorescentnih i laserskih boja. Kumarini se koriste u kozmetičkoj industriji za proizvode kao što su sapuni, zubne paste, kreme i parfemi. Koriste se i kao neutralizatori za gume i plastične materijale, kao i za boje i sprejeve da bi ublažili neprijatne mirise [61].

Razne studije su potvrdile da veliki broj biljnih ekstrakata, korišćenih kroz istoriju u medicinske svrhe, sadrže visoku koncentraciju kumarinskih derivata [56–61].

1.2.3.1. Podela kumarinskih derivata

Kao što je već rečeno, kumarini su klasa organskih jedinjenja koju odlikuje prisustvo laktonskog prstena kondenzovanog sa benzenovim prstenom. Mogu biti klasifikovani na različite načine, uključujući hemijsku strukturu, poreklo i biološku aktivnost. Klasifikacija na osnovu strukture je definisana prisustvom i položajem supstituenata na benzenovim i laktonskim prstenovima, kao što je prikazano na sledećoj šemi:

Šema 1.3. Klasifikacija kumarinskih derivata na osnovu hemijske strukture [58-61]

Kao što se može videti sa šeme 1.3., prema ovom kriterijumu derivati kumarina su klasifikovani u nekoliko kategorija, od kojih su najčešće:

- 1. Jednostavni kumarini su oni bez kompleksnih supstituenata na benzenovom ili laktonskom prstenu. Umbeliferon i 4–hidroksikumarin su dva najpoznatija predstavnika ove grupe.
- Furanokumarini predstavljaju kumarinske derivate koji u strukturi sadrže furanski prsten vezan sa laktonskim delom kumarinske osnove. Furanokumarini se u izobilju nalaze u citrusnom voću i povezani su sa fototoksičnošću kod ljudi [62]. Bergapten i psoralen su dva najpoznatija primera (Slika 1.12.).

Slika 1.12. Struktura poznatih furanokumarina: bergapten (levo) i psoralen (desno)

3. Piranokumarini su kumarinski derivati sa piranskim prstenom koji je vezan za laktonski prsten kumarinske osnove. Pokazalo se da piranokumarini, koji su prisutni u biljkama poput peršuna i celera, imaju različita biološka dejstva, uključujući antikancerogena i antiinflamatorna svojstva [63]. Najpoznatiji predstavnik je ferprenin (Slika 1.13.).

Slika 1.13. Struktura ferprenina

4. Četvrtu grupu predstavljaju derivati kumarina sa jednim ili više aromatičnih supstituenata kovalentno vezanih za benzenov ili laktonski prsten. Ovi derivati kumarina imaju različita biološka dejstva i mogu se proizvesti u laboratorijskim uslovima ili naći u biljkama. Varfarin (Warfarin – WF), antikoagulant koji se koristi u medicini, i dikumarol, prirodni antikoagulant koji se nalazi u senu slatke deteline, su dva najznačajnija primera.

Kumarini se takođe mogu kategorisati prema njihovom poreklu, koje je određeno načinom dobijanja jedinjenja. Derivati kumarina izolovani iz biljaka ili drugih prirodnih izvora se smatraju **prirodnim** kumarinima, dok se kumarinski derivati sintetisani u laboratorijskim uslovima mogu smatrati **sintetičkim** kumarinima.

Kao što je već pomenuto, prirodni kumarini imaju različite biološke funkcije i kao sastojci biljnih ekstrakata se u velikoj meri koriste u tradicionalnoj medicini. Kumarin, supstanca koja se nalazi u zrnu tonke i slatkom drvetu, i skopoletin (Slika 1.14.), jedinjenje koje se nalazi u duvanu i kajsiji, su samo neki od primera.

Slika 1.14. Struktura skopoletina, kumarina koji se nalazi u duvanu i kajsiji

Pored prirodnih kumarina, sintetički kumarini se mogu modifikovati i primeniti da bi se povećala biološka aktivnost ili smanjila toksičnost prirodnih analoga. Acenokumarol, sintetički derivat kumarina koji se koristi kao antikoagulant, i etil kumarin–3–karboksilat, sintetički derivat kumarina sa antibakterijskim i antiinflamatornim svojstvima, su neki od efikasnih kumarinskih derivata proizvedenih u laboratorijskim uslovima [64–66]. Strukture ovih derivata prikazane su na sledećoj slici:

Slika 1.15. Struktura acenokumarola (levo) i etil kumarin–3–karboksilata (desno)

1.2.3.2. Biološka aktivnost kumarinskih derivata.

Derivati kumarina su vekovima korišćeni kao aromatični dodaci u hrani i kao lekovita sredstva u tradicionalnoj medicini. Kao što je već napomenuto, derivati kumarina su prirodne ili sintetičke supstance sa osnovom u kumarinskom jezgru i koja zahvaljujući specifičnoj reaktivnosti koja zavisi od prirode i osobina različitih supstituenata važe za jedinjenja sa veoma širokim spektrom bioloških funkcija [50–66].

Antiinflamatorna aktivnost kumarinskih derivata: Pokazalo se da derivati kumarina antiinflamatorna svojstva. Oni smanjuju proizvodnju imaju proinflamatornih citokina kao što su interleukin-6 (IL-6), faktor nekroze tumora-alfa $(TNF-\alpha)$ i prostaglandin E2 (PGE2). Derivati kumarina imaju antiinflamatorno dejstvo, jer smanjuju aktivnost enzima ciklooksigenaze (COX) i lipoksigenaze (LOX), proizvodnju prostaglandina, odnosno koii su uključeni u leukotriena. Antiinflamatornu aktivnost između ostalih ispoljavaju sam kumarin (Slika 1.10.), zatim skopoletin (Slika 1.14.), fraksetin, eskuletin (Slika 1.16.) i mnogi drugi [65–67].

Slika 1.16. Struktura fraksetina (levo) i eskuletina (desno)

Takođe, pokazalo se da derivati kumarina pokazuju **antimikrobnu aktivnost** protiv širokog spektra patogena, uključujući bakterije, gljivice i viruse. Dokazano je da inhibiraju rast i stvaranje biofilma u bakterijama, uključujući rodove *Staphilococcus aureus* i *Pseudomonas aeruginosa*. Dokazano je i da derivati kumarina imaju antivirusni efekat protiv virusa kao što su hepatitis C i HIV. Primeri kumarinskih derivata koji ispoljavaju antimikrobno dejstvo su, pored samog kumarina (Slika 1.10.), eskuletin (Slika 1.16.), umbeliferon i 4–hidroksikumarin (Slika 1.17.) [68].

Slika 1.17. Struktura umbeliferona (levo) i 4-hidroksikumarina (desno)

Antikancerogena aktivnost: Derivati kumarina su sve češće proučavani zbog njihovog antikancerogenog dejstva. Pokazalo se da u tumorskim ćelijama određeni kumarinski derivati smanjuju proliferaciju ćelija, izazivaju apoptozu i ograničavaju angiogenezu. Derivati kumarina imaju antitumorsku aktivnost zbog svoje sposobnosti da ciljaju višestruke signalne puteve uključene u rast i napredovanje tumora [69]. Kada je reč o antikacerogenoj aktivnosti, poseban fokus u poslednjih nekoliko godina stavljen je na komplekse kumarinskih derivata sa prelaznim metalima. U nekoliko radova u kojima je ispitivana antikancerogena aktivnost, kompleksi Pd(II) jona sa kumarinskim derivatima pokazali su izuzetnu selektivnost, ali i visoku citotoksičnost prema ćelijama kancera pankreasa, što može biti od posebne važnosti jer leka za ovaj tip kancera skoro da nema. Posebno je interesantno da vezivanje Pd(II) menja mehanizam delovanja kumarinskih derivata, pa se korišćenjem već poznatih kumarina sa antikancerogenom aktivnošću u sinergiji sa njihovim Pd(II) kompleksima može postići višestruki "napad" na ćelije kancera [70-73]. Neki kompleksi metala sa derivatima kumarina koji su pokazali antikancerogeni potencijal dati su na sledećoj slici:

Slika 1.18. Struktura kompleksa kumarina sa Pd(II) jonima [70–73]

Derivati kumarina se već nekoliko decenija koriste kao **antikoagulanti**. Oni deluju tako što blokiraju funkciju enzima pod nazivom vitamin K epoksid reduktaza (VKOR), koji je uključen u proizvodnju komponenti zgrušavanja zavisnih od vitamina K. Derivati kumarina, kao što je varfarin, koriste se u lečenju i prevenciji tromboembolijskih bolesti [74]. Struktura varfarina data je na slici 1.19.

Slika 1.19. Struktura varfarina, poznatog antikoagulatnog agensa

Smatra se da derivati kumarina poseduju jaku **antioksidativnu aktivnost** zbog sposobnosti da uklone slobodne radikale i smanje stepen peroksidacije lipida. Pokazalo se da štite DNK, proteine i lipide od oštećenja izazvanih oksidativnim stresom. Antioksidativno dejstvo derivata kumarina povezano je sa njihovim kapacitetom da vezuju jone metala, doniraju elektrone, protone ili atome vodonika i tako inaktiviraju slobodne radikale (u zavisnosti od uslova sredine i mehanizma kojim ispoljavaju antiradikalsko dejstvo [7–14], o čemu će biti više reči u narednim poglavljima).

1.2.3.3. Derivati 4–hidroksikumarina.

4–Hidroksikumarini su podklasa hidroksikumarina, i predstavljaju prirodna ili sintetička jedinjenja sa kumarinskom osnovom i jednom ili više hidroksilnih grupa vezanih za pomenutu osnovu, od kojih se jedna nalazi u položaju C4. Kada su u pitanju biološke i fiziološke funkcije ovih jedinjenja može se ponoviti većina stvari koje su već rečene u poglavlju o samim kumarinima, jer 4–hidroksikumarini predstavljaju jednu od najvećih i najznačajnijih grupa kumarina, pa se njihovi predstavnici često poistovećuju sa samim kumarinima. Jedan od glavnih predstavnika ove grupe jedinjenja, je varfarin (Slika 1.19.), koji je pored antioksidativne i antikancerogene aktivnosti poznat kao veoma efikasan antikoagulantni lek koji se klinički koristi više od 60 godina [74–76]. Varfarin deluje tako što inhibira enzim VKOR, koji je potreban jetri za proizvodnju brojnih komponenti za zgrušavanje krvi. Pored varfarina i drugi derivati 4–hidroksikumarina pokazali su dobar antikoagulatni efekat. Acenokumarol (Slika 1.15.) i fenprokumon (Slika 1.20.) su takođe derivati 4– hidroksikumarina sa izraženim antikoagulativnim svojstvima [75–77].

Slika 1.20. Struktura fenprokumona

Ovi lekovi su poznati po tome što pomažu u sprečavanju stvaranja krvnih ugrušaka, ali njihova nesmotrena primena može dovesti do velikih zdravstvenih problema, jer smanjuju sposobnost organizma da sintetiše supstance koje su poznate kao faktori zgrušavanja, što pri povredama može izazvati nekontrolisano unutrašnje ili spoljašnje krvarenje, a u težim slučajevima i smrt. Takođe, pored derivata 4– hidroksikumarina koji se koriste kao antikoagulantni lekovi, postoje i jedinjenja poznatija pod nazivom *supervarfarini*. Supervarfarini predstavljaju klasu rodenticida, a deluju tako što su daleko potentniji i imaju dugotrajniji i izraženiji efekat od običnog varfarina. Ovo povećava njihovu sposobnost da ubijaju glodare, a istovremeno povećava rizik od nekontrolisanog krvarenja i drugih negativnih efekata kod ljudi i drugih životinja. Supervarfarini su često povezani sa raznim namernim i nenamernim trovanjem ljudi. Krvarenje, anemija, iscrpljenost i otežano disanje su simptomi trovanja supervarfarinom. Trovanje supervarfarinom se često leči vitaminom K, koji može da preokrene efekte jedinjenja tako što podstiče proizvodnju faktora zgrušavanja u jetri [75–78].

Pomenuto je da 4–hidroksikumarini imaju nekoliko ključnih bioloških karakteristika pored njihovog antikoagulantnog efekta. Nekoliko studija je, na primer, pokazalo da ova jedinjenja imaju dobru antioksidativnu aktivnost, koja može pomoći u zaštiti ćelija od oštećenja izazvanog slobodnim radikalima. Takođe je dokazano da imaju antibakterijsko dejstvo, što znači da se mogu koristiti za lečenje bakterijskih i gljivičnih infekcija. Štaviše, neki 4–hidroksikumarini i njihovi Pd(II) kompleksi (Slika 1.18.) imaju antikancerogenu aktivnost i indukuju apoptozu, odnosno programiranu ćelijsku smrt, u ćelijama kancera [70–73].

Za raznolikost bioloških i fizioloških uloga ove grupe jedinjenja, zaslužna je specifična struktura samog jedinjenja i sposobnost vezivanja različitih supstituenata za osnovnu strukturu. Na primer, usled prisustva β -ketoestarskog fragmenta ovo jedinjenje pokazuje dodatnu stabilizaciju kumarinske osnove povećavajući aromatičnost sistema. Ova osobina omogućava poboljšanu delokalizaciju nesparenog elektrona što povećava antioksidativni kapacitet ovog jedinjenja i čini ga interesantnim za ispitivanje mehanizama antioksidativne i antiradikalske aktivnosti. Nedavna istraživanja [79,80] koja su bila usmerena prema ispitivanju antiradikalske aktivnosti 4-hidroksikumarina dovela su do definisanja dva nova mehanistička puta inaktivacije radikalskih vrsta:

- Formiranje radikalskog adukta praćeno apstrakcijom atoma vodonika (*Radical Adduct Formation followed by Hydrogen Atom Abstraction*) **RAF–HAA**
- Apstrakcija atoma vodonika praćena kuplovanjem radikala (*Hydrogen Atom Abstraction followed by Radical–Radical Coupling*) **HAA–RRC**

Ovi mehanizmi su posebno značajni u kiseloj sredini i nepolarnim rastvaračima gde teško dolazi do formiranja anjonske vrste. Takođe, RAF–HAA je posebno važan za jedinjenja koja nisu posebno dobri donori protona/vodonika, pa je fromiranje adukta primarni način interakcije sa radikalskom vrstom. U ovoj doktorskoj disertaciji, jedan od glavnih fokusa istraživanja biće razmatranje mehanizma koji uključuje anjon kao jedan od glavnih aktera antiradikalske reakcije, ali o tome će više reči biti u poglavlju posvećenom mehanizmima reakcija.

1.2.4. Definisanje antioksidativnog i antiradikalskog potencijala jedinjenja

Antioksidativni kapacitet hrane, pića, biljnih ekstrakata i prirodnih proizvoda je izuzetno važan, jer ukazuje na njihove potencijalne zaštitne sposobnosti, koje omogućavaju industrijsku i farmakološku primenu. Za sveukupan kapacitet određene smeše, zaslužni su antioksidanti prisutni u datom materijalu. Štaviše, određivanje antiradikalskog i antioksidativnog potencijala jedinjenja je važan aspekt razumevanja sveobuhvatnih karakteristika i primena samog jedinjenja i materijala iz kog je ono izolovano. Antioksidativni i antiradikalski kapacitet mogu biti određeni eksperimentalno i teorijski, sa tom razlikom da se eksperimentalno određuje sveukupan antioksidativni potencijal pojedinačnih jedinjenja ili smeše jedinjenja, dok je teorijski pored toga moguće odrediti i mehanizam antioksidativnog, odnosno antiradikalskog delovanja.

1.2.4.1. Odnos strukture i reaktivnosti antioksidanata

Antioksidanti su jedinjenja specifične strukture koja im omogućava inaktivaciju slobodnih radikala i drugih reaktivnih vrsta [81–83]. Glavne strukturne karakteristike koje poseduju jedinjenja koja se smatraju dobrim antioksidantima su sledeće:

- Aromatičnost: antioksidanti su jedinjenja koja u osnovi imaju jedan ili više kondenzovanih aromatičnih prstenova, jer konjugovane π–veze omogućavaju dobru delokalizaciju nesparenog elektrona čime smanjuju reaktivnost i povećavaju stabilnost radikalskog sistema. To molekulima antioksidanata omogućava da radikalskim vrstama "doniraju" elektron ili atom vodonika, čime će ih inaktivirati, ali na taj način će i sami postati radikali, mada mnogo stabilniji od polaznih.
- Planaranost: Jedan od glavnih uslova dobre delokalizacije nesparenih elektrona jeste planarnost strukture radikalske vrste, jer se spinska gustina može mnogo bolje rasporediti preko planarnih, u odnosu na neplanarne sisteme. Ovo ipak ne znači da neplanarni molekuli nužno nisu dobri antioksidanti, o čemu će biti reči u rezultatima ove doktorske disertacije.
- Prisustvo heteroatoma i funkcionalnih grupa koje sadrže heteroatome: Prisustvo heteroatoma za koje je vezan vodonik je često važna karakteristika dobrih antioksidanata. Naime, veza između ovih atoma i vodonika je polarna, što omogućava lako otpuštanje atoma vodonika koji se onda donira slobodno radikalskoj vrsti pri čemu se ona inaktivira. Takođe, ovi atomi, pogotovu nakon otpuštanja vodonika imaju pozitivan rezonancioni efekat, grade dvostruke (π– veze) sa prstenom za koji su vezani, dodatno stabilizujući novonastali slobodni radikal.
- **Prisustvo drugih funkcionalnih grupa**: Prisustvo elektron–donorskih i elektron–aceptorskih grupa u susedstvu grupa koje su donori atoma vodonika, elektrona ili protona značajno utiče na antiradikalski kapacitet jedinjenja, utičući na stabilizaciju novonastale radikalske ili anjonske vrste svojim induktivnim i

rezonancionim efektima. Usled toga, na primer, derivati salicilne kiseline imaju slabiji antiradikalski kapacitet u odnosu na analogne derivate cimetne kiseline.

1.2.4.2. Eksperimentalne metode za definisanje antioksidativnog potencijala

Tokom proteklih nekoliko decenija razvijen je niz eksperimentalnih metoda za određivanje antiradikalskog i antioksidativnog potencijala, uključujući hemijske i biološke testove [84–92]. Na sledećoj šemi prikazana je detaljna podela hemijskih metoda za određivanje antioksidativnog potencijala:

Šema 1.4. Podela hemijskih metoda za određivanje antioksidativnog kapaciteta

Jedna od najznačajnijih metoda za određivanje antioksidativnog kapaciteta, koja spada u spektroskopske metode jeste takozvani **DPPH test** (DPPH•=2,2–*difenil*–1– *pikrilhidrazil radikal*) [86–88]. DPPH• predstavlja hemijsku vrstu koja je neuobičajeno stabilna na sobnoj temperaturi uprkos radikalskoj prirodi. Za ovu pojavu posebno je zaslužna struktura samog DPPH• koja je predstavljena na Slici 1.21.

Slika 1.21. Prikaz 2D (levo) i 3D (desno) strukture 2,2–difenil–1–pikrilhidrazil radikala (DPPH•)

Ovaj test se zasniva na sposobnosti antioksidanata da doniraju atome vodonika ili elektrone DPPH•, smanjujući njegovu apsorpciju na 517 nm u vidljivom spektru što se može registrovati promenom boje iz ljubičaste u žutu. Promena boje i stabilnost radikala na sobnoj temperaturi čini ovaj test jednostavnim i lako primenljivim za procenu antioksidativne aktivnosti širokog spektra različitih jedinjenja [86–90].

Pored DPPH testa, u ovoj doktorskoj disertaciji korišćen je i test pod nazivom **ABTS test** (2,2'–azino–*bis*(3–etilbenzotiazolin–6–sulfonska kiselina). Ovaj test se zasniva na principima sličnim DPPH testu, sa tom razlikom da se apsorpcija ABTS⁺⁺ dešava na talasnoj dužini koja iznosi 734 nm, a promena boje prati se iz zelene do obezbojenja [88–90].

Elektrohemijske metode kao što su ciklična voltametrija (*Cyclic Voltammetry* – **CV**) i diferencijalna pulsna voltametrija (*Differential Pulse Voltammetry* – **DPV**) se takođe koriste za određivanje antioksidativne aktivnosti pored ovih hemijskih testova. Ove metode, koje se zasnivaju na sposobnosti antioksidanata da doniraju elektrone, posebno su korisne za merenje antioksidativne aktivnosti jedinjenja sa redoks aktivnim funkcionalnim grupama [84–86,90].

Konačno, da bi se izmerila antioksidativna aktivnost jedinjenja u biološkim sistemima, razvijeni su biološki testovi kao što su test ćelijske antioksidativne aktivnosti (CAA) i test potrošnje kiseonika. Ovi testovi su posebno korisni za određivanje mehanizma delovanja antioksidanata i njihovih potencijalnih fizioloških uloga [86–92].

1.2.4.3. Računarske metode za ispitivanje antioksidativnog potencijala

Za ispitivanje antioksidativnog potencijala pored eksperimentalnih metoda, često se koriste i računarske, odnosno takozvane *in silico* metode. Pomoću računarskih metoda je moguće odrediti antioksidativni kapacitet (koji će pratiti eksperimentalne rezultate), ali je moguće i dobiti podatke o mehanizmu prema kom se antioksidativna aktivnost ispoljava, koje hemijske vrste učestvuju/su zaslužne za antioksidativni kapacitet jedinjenja i kako eventualno postići željenu aktivnost. Postoje dva aspekta prema kojima je moguće posmatrati ove reakcije: termodinamički i kinetički aspekt. [78–83,93–96]

Kada govorimo o termodinamičkim parametrima koji karakterišu reakcije kojima molekuli ispoljavaju antioksidativni potencijal, oni se obično dobijaju kao razlike u Gibsovim slobodnim energijama (*Gibbs Free Energies* – $\Delta_r G$). Ovi proračuni se koriste kao preliminarni indikatori antioksidativnog potencijala, ali obzirom da su radikalske reakcije veoma brze i kinetički kontrolisane reakcije, za detaljniji uvid u antioksidativni mehanizam potrebno je posmatrati kinetičke parametre ovih reakcija [78–80,93–96].
1.2.4.3.1. Teorija prelaznog stanja

Kinetički aspekt je nešto komplikovaniji od termodinamičkog i u velikoj meri zavisi od dostupnosti geometrije prelaznog stanja reakcije. Naime, ako se reakcije odigravaju preko prelaznih stanja, čije je geometrije moguće dobiti proračunima u programu, brzine reakcije se dobijaju preko konvencionalne teorije prelaznog stanja (*Transition State Theory* – **TST**). Matematički izraz na osnovu kog se izračunava brzina reakcije predstavljen je u sledećoj jednačini [97–100]:

$$K^{ZCT_0} = \sigma \gamma \frac{k_B T}{h} e^{\frac{-\Delta G^{\neq}}{RT}}$$
(1.9.)

gde ΔG^{\neq} predstavlja energiju aktivacije (kJ mol⁻¹), k_B predstavlja Bolcmanovu (*Boltzmann*) konstantu (1,38×10⁻²³ JK⁻¹), *h* predstavlja Plankovu (*Planck*) konstantu (6,63×10⁻³⁴ Js), R univerzalnu gasnu konstantu (8,314 J K⁻¹ mol⁻¹), γ (T) predstavlja transmisioni koeficijent, a σ degenerisanost reakcionog puta.

Parametri koji razlikuju izraz 1.9. od izraza za brzinu prema TST, koji se temelji na principima klasične mehanike, su γ i σ [97–100]. Transmisioni koeficijent uključuje korekcije konstante brzine koje potiču od različitih fizičkih efekata, među kojima se nalazi i takozvani efekat tunelovanja. Kvantni efekti okarakterisani transmisionim koeficijentom su važni za mnogobrojne reakcije, i zanemarivanje ovih efekata izazvalo bi velike greške u dobijenim konstantama brzine hemijske reakcije [101]. Ekartova metoda predstavlja veoma efikasan pristup za procenu $\gamma(T)$. Ova metoda predstavlja poseban slučaj ZCT_0 (Zero-Curvature Tunneling) metode koja koristi Ekartove funkcije za generisanje krive potencijalne energije [102]. Statistički faktor za reakciju poznat i pod nazivom degenerisanost reakcionog puta (σ), predstavlja broj ekvivalentnih reakcionih puteva. To znači da uvođenjem ovog parametra se uzima u obzir mogućnost da se proces odigra na različite, ali ekvivalentne načine [103]. Jedan od najefikasnijih načina dobijanja vrednosti statističkog faktora reakcije je predložen od strane Polaka i Pečukansa (Pollak and Pechukas), a po kome se statistički faktor za reakciju računa kao odnos rotacionih simetrijskih brojeva reaktanata i prelaznog stanja [104–106].

1.2.4.3.2. Markusova teorija

Teorija prenosa elektrona definisana je od strane Rudolfa Markusa (*Rudolph Marcus*), za čiji razvoj je on nagrađen Nobelovom nagradom za hemiju 1992. godine. Ova teorija predstavlja fundamentalni okvir za razumevanje reakcija prenosa elektrona u hemijskim i biološkim sistemima. Markusova teorija uključuje termodinamičke i kinetičke aspekte kako bi pružila kvantitativni opis brzine prenosa elektrona između dve hemijske vrste. Centralna ideja teorije je koncept energije reorganizacije, koji obuhvata energiju potrebnu za rekonfiguraciju elektronskog oblaka i uticaja promene elektronske gustine na dužine veza i stabilnost sistema. Markusova teorija elegantno objašnjava kako energija reaktanata, energija

reorganizacije i elektronska sprega između sistema donora i akceptora utiču na brzinu prenosa elektrona [104–106].

Markusova teorija potvrđena je mnogobrojnim eksperimentima, a jedan od najvažnijih predstavlja ispitivanje intramolekulskog prelaza elektrona kod radikal anjona koji je izveden od strane Džona Milera (*John Miller*) i njegovih saradnika 1984. godine [106–108].

Ova teorija je široko primenjena u različitim oblastima, uključujući fotohemiju, elektrohemiju i biohemiju, omogućavajući bolje razumevanje procesa prenosa elektrona u sistemima u rasponu od veštačkih molekulskih konstrukcija do bioloških lanaca transporta elektrona. Štaviše, uvidi stečeni iz Markusove teorije prenosa elektrona bili su izuzetno korisni u određivanju antioksidativne aktivnosti različitih molekula. Mnogi antioksidanti neutrališu štetne efekte slobodnih radikala i drugih reaktivnih vrsta jednostavno donirajući im elektrone. Principi Markusove teorije služe kao osnova za predviđanje efikasnosti reakcija prenosa elektrona, pomažući u razvoju novih antioksidanata sa poboljšanom efikasnošću. Kao rezultat toga, presek Markusove teorije i antioksidativne aktivnosti pruža sveobuhvatan pogled na "zamršenu" korelaciju između molekulskih interakcija i ćelijske redoks ravnoteže, unapređujući njihovu sposobnost da se bore protiv oksidativnog stresa i poboljšaju opšte zdravlje ljudi [104–108].

Savremena teorija kinetike prelaza elektrona zasniva se na harmonijskoj aproksimaciji za uključene dijabatske procese predstavljene u obliku parabola. Prva parabola odgovara reaktantima $V_R(q)$, dok druga odgovara proizvodima $V_P(q)$ reakcije prenosa elektrona sa odgovarajućim minumima qR i qP (Slika 1.22) [109].

Slika 1.22. Markusova teorija zasnovana na dva parabolična dijabatska potencijala $V_{\mathbb{R}}(q)$ i $V_{\mathbb{P}}(q)$ reaktanata i proizvoda

Kao što se može videti sa grafika, promenu slobodne Gibsove energije možemo računati na osnovu sledećeg izraza:

$$\Delta_{\mathrm{r}}G = V_{\mathrm{P}}(q_{\mathrm{P}}) - V_{\mathrm{R}}(q_{\mathrm{R}}) \tag{1.10}$$

Pomoću Markusove teorije pokazano je da je energiju aktivacije kod reakcija koje uključuju transfer elektrona moguće izračunati na sledeći način:

$$\Delta G_a^{\neq} = V_R(q_C) - V_R(q_R) = V_R(q_C) = \frac{\lambda}{4} (1 + \frac{\Delta_r G}{\lambda})^2$$
(1.11)

U jednačini 1.11 λ predstavlja energiju reorganizacije (1.12), odnosno energiju potrebnu za zadržavanje trenutne geometrije reaktanata uz promenu spinskog stanja i naelektrisanja koji odgovaraju proizvodima (i obratno). Na ovaj način dobijaju se takozvani vertikalni proizvodi. Kako promena spinskog stanja i naelektrisanja zahteva promenu geometrije, ako tu promenu ne dozvolimo (korišćenjem proračuna energije u jednoj tački – *single point energy calculation*) dobićemo energije vertikalnih proizvoda, pri čemu Δ E predstavlja razliku u energijama reaktanata i vertikalnih proizvoda.

$$\lambda = \Delta E - \Delta_r G \tag{1.12}$$

Uvrštavanjem jednačine 1.12 u jednačinu 1.9 koja opisuje teoriju prelaznog stanja, mogu se izračunati konstante brzine transfera elektrona, ali ne i da li ispitivana reakcija prolazi kroz energetsku barijeru ili je reakcija kontrolisana difuzijom. Da bi se rešio pomenuti problem mora se primeniti Kolins–Kimbalova (*Colins–Kimball*) teorija predstavljena sledećim izrazom:

$$k_{app} = \frac{k_D k_{TST}}{k_D + k_{TST}} \tag{1.13}$$

gde k_{app} predstavlja prividnu konstantu brzine (*apparent rate constant*), a ko konstantu brzine difuzije. Glavna pretpostavka Kolins–Kimbelove teorije je da se reakcija odvija na specifičnom rastojanju koje se obeležava sa α . Ovo rastojanje se može izračunati kao zbir poluprečnika reaktanata. Kada je specifično rastojanje α poznato, može se izračunati konstanta brzine ireverzibilne bimolekulske reakcije kontrolisane difuzijom [110]:

$$k_D = 4\pi\alpha D N_A \tag{1.14}$$

gde N_A predstavlja Avogadrov (*Avogadro*) broj, a D uzajamni difuzioni koeficijent reaktanta.

1.2.5. Mehanizmi antioksidativnog delovanja

U direktnoj reakciji sa reaktivnim radikalskim vrstama, molekuli mogu ispoljavati antioksidativni potencijal prateći jedan ili više reakcionih puteva predstavljenih na jednačinama 1.15–1.19. Mehanizam poznat kao "Apstrakcija atoma vodonika" (*Hydrogen atom abstraction –* **HAA**) predstavljen je jednačinom 1.15 i podrazumeva proces u kome molekul antioksidanta (A–OH) "predaje" atom vodonika radikalskoj vrsti (R•). Time nastaje novi, stabilniji radikal (A–O•). Kao što se može videti iz jednačina 1.15–1.19, A–O• je produkt i mehanizama pod nazivom "Transfer elektrona praćen transferom protona" (Single Electron Transfer-Proton Transfer - SET-PT) i "Sekvencionalni gubitak protona praćen transferom elektrona" (Sequential Proton Loss Electron Transfer - SPLET). Za razliku od HAA, SPLET i SET-PT su mehanizmi koji se odigravaju u dva koraka, što se može videti iz jednačina koje ih opisuju. Naime, prvi korak SET-PT mehanizma rezultira formiranjem radikal-katjonske vrste (A-O⁺⁺), koja nastaje kada dođe do transfera elektrona sa molekula antioksidanta na radikalsku vrstu. Ovako nastao A-O⁺⁺ dalje reaguje sa novonastalim anjonom, pri čemu dolazi do transfera protona sa radikal-katjona čime se pomenuti anjon neutrališe, a radikalkatjon postaje radikal A-O[•]. Sa druge strane, u prvom koraku SPLET mehanizma ne učestvuje radikalska vrsta, već prvi korak ovog mehanizma karakteriše nastanak anjonske vrste molekula antioksidanta, A-O-. Ovaj mehanizam je karakterističan za jedinjenja koja imaju izrazito "kisele" vodonikove atome i dominantan je u polarnim sredinama sa pH koji omogućava spontano formiranje anjona (u zavisnosti od pKa vrednosti antioksidanta). U drugom koraku SPLET mehanizma dolazi do transfera elektrona sa anjona antioksidanta na radikalsku vrstu [78-83,90-97].

- $\mathbf{HAA:} \operatorname{A-OH} + \operatorname{R}^{\bullet} \to \operatorname{A-O}^{\bullet} + \operatorname{RH}$ (1.15)
- **SET-PT:** $A-OH+R^{\bullet} \rightarrow A-O^{\bullet+}+R^{-}$ (1.16)
 - $A-O^{\bullet+} + R^{-} \to A-O^{\bullet} + RH \tag{1.17}$
- **SPLET:** $A-OH \rightarrow A-O^- + RH$ (1.18)
 - $A-O^- + R^\bullet \to A-O^\bullet + R^- \tag{1.19}$

Posebno interesantan mehanistički put predstavlja "Formiranje radikalskog adukta" (*Radical Adduct Formation* – **RAF**). Ovaj mehanizam se odvija u jednom koraku, ali za razliku od prethodnih mehanizama, novonastali radikal nije "izveden" iz molekula antioksidanta, već je nastaje kao adukt molekula antioksidanta i radikalske vrste [R–A–OH]• (jednačina 1.15). Ovaj mehanistički put je veoma važan, jer je karakterističan za jedinjenja koja iz nekog razloga ne mogu "donirati" vodonik/proton (nemaju polarizovanu vezu, visoke sterne smetnje ili gradi jake vodonične veze). Veliki broj molekula svoj antioksidativni kapacitet ispoljava preko RAF mehanizma. Na osnovu dostupnih literaturnih podataka pokazalo se da je veoma važan kada antioksidant reaguje sa HO•, HOO•, alkil, alkiloksilnim, alkilperoksilnim radikalima i glutationom [78–80,90–97].

$$\mathbf{RAF:} \mathbf{A} - \mathbf{OH} + \mathbf{R}^{\bullet} \to [\mathbf{R} - \mathbf{A} - \mathbf{OH}]^{\bullet}$$
(1.20)

Ovi mehanizmi su slikovito predstavljeni na Šemi 1.5. Da bi šematski prikaz bio razumljivi, umesto uopštenih oznaka za molekul antioksidanta i radikala, korišćen je primer inaktivacije hidroksi radikala 4–hidroksikumarinom.

Šema 1.5. Reakcioni mehanistički putevi koje prate reakcije antioksidativne i antiradikalske aktivnosti

Kao što se može videti sa pomenute šeme, HAA, SET–PT i SPLET mehanizam se uglavnom odigravaju formiranjem radikala nastalog iz molekula antioksidanta. Ovaj radikal je stabilniji od hidroksi radikala, jer usled specifične strukture (konjugovane π -veze, aromatično jezgro, rezonancija) ima sposobnost delokalizacije nesparenog elektrona. Iako se može smatrati dobijeni radikal relativno stabilnim, kao što je već pomenuto u prethodnom poglavlju, inaktivaciju i ovog radikala je potrebno razmatrati sve do trenutka kada dođe do formiranja stabilne, odnosno neutralne hemijske vrste. RAF–HAA i HAA–RRC mehanizmi koji prate potpunu inaktivaciju radikala pomoću antioksidanata do formiranja neutralne vrste predstavljeni su sledećim jednačinama:

$$\mathbf{RAF}-\mathbf{HAA:} A-\mathbf{OH}+ \mathbf{R}^{\bullet} \to [\mathbf{R}-\mathbf{A}-\mathbf{OH}]^{\bullet}$$
(1.21)

$$[R-A-OH]^{\bullet} + R^{\bullet} \rightarrow R-A=O + RH$$
(1.22)

$$\mathbf{HAA}-\mathbf{RRC:} A-\mathbf{OH}+\mathbf{R}^{\bullet} \to A-\mathbf{O}^{\bullet}+\mathbf{RH}$$
(1.23)

$$A-O^{\bullet}+R^{\bullet} \to R-A=O \tag{1.24}$$

Ilustrativni prikaz ovih mehanizama dat je na sledećoj šemi:

Šema 1.6. Reakcioni mehanistički putevi koje prate inaktivaciju radikala pomoću antioksidanata do formiranja neutralne vrste; RAF–HAA i HAA–RRC mehanizam

Kao što se može videti sa Šeme 1.6., oba mehanistička puta (RAF–HAA i HAA– RRC) se realizuju dobijanjem istog finalnog proizvoda. Bitno je napomenuti da dobijeni proizvod, prema rezultatima predstavljenim u radu, pokazuje nižu toksičnost u odnosu na 4–hidroksikumarin [78,79].

Koji reakcioni put će se pratiti zavisi od uslova sredine [111]. Oba reakciona puta će biti favorizovani u kiseloj sredini, gde je nastanak anjonske vrste onemogućen. Ispitivanje antioksidativnih mehanizama u alkalnoj sredini biće tema istraživanja ove disertacije.

1.3. Farmakokinetika benzohidrazidskih derivata 4-hidroksikumarina

Jedinjenja koja poseduju visok antioksidativni potencijal su, osim u živim bićima, veoma značajna u različitim granama industrije, gde nekontrolisani oksidativni procesi predstavljaju značajan izazov i potrebno ih je sprečiti. Različiti hemijski aditivi u prehrambenim proizvodima, lekovima, bojama i lakovima imaju upravo antioksidativnu ulogu. Međutim, da bi se jedinjenja primenila kao antioksidanti u prehrambenoj i farmaceutskoj industriji, pored antioksidativnog potencijala moraju zadovoljiti različite farmakokinetičke, farmakodinamičke i toksikološke parametre. Naime, efikasnost određenog antioksidanta in vitro ne mora da garantuje dobar efekat u *in vivo* uslovima. Naprotiv, najveći broj farmakološki aktivnih jedinjenja, koja imaju odličan potencijal in vitro, u in vivo fazama ispitivanja pokažu se kao slabo aktivni, a u nekim slučajevima čak i izuzetno toksični. Pored toga, biodostupnost i sposobnost apsorpcije, prolaska kroz kožu, ćelijsku membranu, kao i kroz krvno-moždanu barijeru (Blood-Brain-Barierre - BBB), veoma su važni parametri kada je u pitanju primena, ne samo antioksidanata već i drugih farmakološki aktivnih jedinjenja u prehrambenoj industriji i farmaciji. Takođe, biološka uloga antioksidanta zavisi od slučaja, tipa i same lokacije gde on svoje dejstvo ispoljava. Na primer, dobar

antioksidant, dizajniran da štiti ćelijsku membranu i komponente ćelije od lipidne peroksidacije, će pored ove uloge imati ulogu sprečavanja oksidativnog stresa i oštećenja komponenti kao što su DNA, proteini i druge strukture i na njima neće ispoljavati negativne efekte [112–114].

Da bi se potencijalni antioksidativni, ili bilo koji farmakološki agensi mogli razmatrati za upotrebu u ljudskom organizmu, neophodno je izvršiti **ADMET** (*Absorption, Distribution, Metabolism, Excretion, and Toxicity*) analizu. Ova sveobuhvatna metoda procenjuje ponašanje potencijalnog agensa u ljudskom telu, pružajući vredan uvid u njegove profile efikasnosti i bezbednosti. Ovom metodom se posmatra kako se potencijalni agens apsorbuje u krvotok, distribuira u ciljna tkiva, metaboliše različitim enzimima i na kraju eliminiše iz organizma. Razumevanje ovih procesa je ključno za predviđanje farmakološke aktivnosti potencijalnog agensa, interakcije sa drugim molekulima u organizmu i potencijalne toksičnosti [115,116].

Jedan od najbitnih aspekata farmakokinetičkog istraživanja, na čije će ispitivanje biti stavljen poseban fokus jeste distribucija potencijalnog kumarinskog agensa kroz organizam. Ovaj aspekt je od posebne važnosti zbog različite rastvorljivosti kumarinskih derivata u vodenim rastvorima, što je posledica različitih supstituenata, a značajno utiče na njihovu biodostupnost. Transport derivata kumarina albuminom je dobro proučavan fenomen u farmaceutskim i farmakokinetičkim istraživanjima. Zbog visokog kapaciteta vezivanja i široko rasprostranjene distribucije u različitim tkivima, albumin, najzastupljeniji protein u krvotoku, igra važnu ulogu u transportu lekova. Derivati kumarina stupaju u interakciju sa albuminom putem reverzibilnog vezivanja. Ova interakcija utiče na farmakokinetiku derivata kumarina, utičući na apsorpciju, distribuciju, metabolizam i izlučivanje. Albumin deluje kao nosač tokom ovog procesa vezivanja, olakšavajući transport derivata kumarina do njihovih ciljnih mesta i pomaže u njihovom kontrolisanom oslobađanju, čime utiče na ukupnu biodostupnost jedinjenja i terapijsku efikasnost. Razumevanje mehanizama koji leže u osnovi transporta derivata kumarina putem albumina je ključno za razvoj i optimizaciju ovih jedinjenja kao potencijalnih antioksidativnih agenasa [117,118].

2. EKSPERIMENTALNI DEO

2. Sinteza benzohidrazidskih derivata kumarina

2.1. Hemikalije i reagensi

Hemikalije i reagensi, korišćeni za sintezu i karakterizaciju novosintetisanih kumarinskih derivata kao što su: 4-hidroksikumarin (C₉H₆O₃, CAS No. 1076-38-6; 98%), 2,3,4-trihidroksibenzoeva kiselina (C7H6O5, CAS No. 610-02-6, 97%), 3,4,5trihidroksibenzoeva kiselina (C7H6O5, CAS No. 149-91-7, 98%), 2,3kiselina $(C_7H_6O_4,$ CAS No. 303-38-8, 3,4dihidroksibenzoeva 99%), dihidroksibenzoeva kiselina (C7H6O4, CAS No. 99-50-3, 99%), 4-hidroksibenzoeva kiselina (C7H6O3, CAS No. 99-96-7, 99%), 4-hidroksi-3-metoksi-benzoeva kiselina (C₈H₉O₄, CAS No. 121–34–6, 97%), 2-hidroksibenzoeva kiselina (C₇H₆O₃, CAS No. 69-72-7, 99%), benzoeva kiselina (C7H6O2, CAS No. 65-85-0, 99.5%), hidrazinmonohidrat (NH2NH2×H2O, CAS No. 7803-57-8, 98%), fosforoksihlorid (POCl3, CAS No. 10025-87-31 99%), DMSO-d₆ ((CD₃)₂SO, CAS No. 2206-27- 1, 99,9% d), hloroform-d (CDCl₃, CAS No. 865-49-6, 99,8% d) kupljeni su od Sigma-Aldrich Chemical Co. (Germany).

Takođe, hemikalije i reagensi korišćeni za procenu antioksidativne aktivnosti: 2,2– difenil–1–pikrilhidrazil radikal (DPPH•, C18H12N5O6, CAS No. 1898–66–4, 98%), 2,2'– azino–bis (3–etilbenzotiazolin–6–sulfonska kiselina (ABTS, C18H18N4O6S4, CAS No. 30931–67– 0, >98%), kalijum persulfat (K2S2O8, CAS No. 7727–21–1, 99.99%), gvožđe(III) hlorid (FeCl3 × 6H2O, CAS No. 7705–08–0, 97%), 5–(dietoksifosforil)–5– metil–1–pirolin–N–oksid (DEPMPO, C9H18NO4P, CAS No. 3317–61–1, ≥97,8%) su kupljeni od *Sigma–Aldrich Chemical Co.* (Germany).

Hemikalije i reagensi neophodni za procenu redoks statusa: etidijum bromid (EB, C₂₁H₂₀BrN₃, CAS No. 1239–45–8, 95%), nitro plavo tetrazolijum hlorid (NBT, C₄₀H₃₀Cl₂N₁₀O₆, CAS No. 298–83–9, 98%) dobijeni su od *SERVA*, *Germany* dok su: 5,5′– ditio–*bis*(2–nitrobenzoeva kiselina) (DTNB, [–SC₆H₃(NO₂)CO₂H]₂, CAS No. 69–78–3, ≥98%), trihlorsirćetna kiselina (CCl₃COOH, CAS No. 76–03–9, ≥98%), tiobarbiturna kiselina (C4H₄N₂O₂S, CAS No. 504–17–6, ≥98%) dobijeni od strane *Sigma–Aldrich Chemical Co.* (Germany). Imortalizovana adherentna ćelijska linija kolorektalnog karacinoma (HCT–116) nabavljana je iz "banke ćelija" *American Type Culture Collection*, ATCC. Rastvarači i ostale hemikalije, analitičke čistoće, upotrebljene u okviru ove doktorske disertacije: metanol (CH₃OH), etanol (C₂H₅OH), acetoniril (C₂H₃N), toluen (C₇H₈), aceton (C₃H₆O), sirćetna (CH₃COOH) i hlorovodnočna (HCl) kiselina , kupljeni su od domaćeg proizvođača.

2.2. Sinteze

2.2.1. Procedura sinteze 3-acetil-4-hidroksikumarina i benzoilhidrazida

Jedinjenja 3–acetil–4–hidroksikumarin (*3–acetil–4–hidroksi–2H–hromen–2–on –* **3AHC**) i benzoilhidrazidi (**BH1–BH9**) prestavljaju reaktante u reakciji kojom se dobijaju benzohidrazidski derivati 4–hidroksikumarina ispitivani u ovoj doktorskoj disertaciji. Jedinjenje **3AHC** dobijeno je direktnim acilovanjem 4–hidroksikumarina (**4HC**), u prisustvu glacijalne sirćetne kiseline i POCl₃, u smeši pod refluksom u trajanju od 3h. Tok hemijske reakcije praćen je tankoslojnom hromatografijom (*Thin Layer Chromatography –* **TLC**), gde je kao eluent korišćena smeša toluena i acetona (2.5:1). Kada je na TLC pločici primećen nestanak reaktanata u smeši, ona je ohlađena do sobne temperature. Dobijeni talog je proceđen i osušen. Ilustrativni prikaz reakcije dat je na sledećoj šemi:

Šema 2.1. Sinteza 3–acetil–4–hidroksi–2*H*–hromen–2–on – (3AHC)

Sa druge strane, benzoilhidrazidni **BH1–BH9** derivati sintetisani su prateći sledeću sintetičku rutu:

U prvom koraku odgovarajuće benzoeve kiseline (**BK1–BK9**), rastvorene su u metanolu i uz refluks tokom 5h i u prisustvu sumporne kiseline kao katalizatora dobijeni su metil estri (**BE1–BE9**) pomenutih kiselina. Reakcija je praćena TLC metodom i nakon završetka reakcije metanol je uparen na vakuum uparivaču. Ovako dobijeni metil estri su zatim preneti u levak za odvajanje pomoću male količine metilen hlorida i isprani vodenim rastvorom NaHCO₃. Ponovnim uparavanjem oslobođeni su viška metilen hlorida. U sledećem koraku reakcije **BE1–BE9** su

pomešani sa ekvimolarnom količinom hidrazinmonohidrata što je dovelo do formiranja odgovarajućih benzoilhidrazida **BH1–BH9**.

2.2.2. Sinteza benzohidrazidskih derivata 4-hidroksikumarina

Sintetisani benzoilhidrazidi **BH1–BH9** i **3AHC** rastvoreni su u smeši sirćetne kiseline i etanola (1:1) i mešani 5h na temperaturi 80°C (refluks). Tok reakcije je praćen TLC metodom gde je kao eluent korišćena smeša etil–acetata i metilen hlorida u odnosu 2:1. Kada je reakcija završena, dobijena smeša je ohlađena do sobne temperature i talog je proceđen, a potom dobijeni proizvodi prekristalisani iz smeše vode i etanola. Na ovaj način dobijeni su benzohidrazidski derivati 4– hidroksikumarina (**CBH1–CBH9**), a tok reakcije je predstavljen na sledećoj šemi:

2.3. Strukturna karakterizacija novosintetisanih benzohidrazidskih derivata 4– hidroksikumarina **CBH1–CBH9**

Kako su strukturne osobine zaslužne za sve biološke, hemijske, fizičke i fiziološke osobine jedinjenja, potrebno je dobro poznavati strukturu ispitivanih jedinjenja planiranih za primenu u bilo kojoj grani industrije ili nauke. Određivanje tačne strukture jedinjenja je često poseban izazov, tokom istorije razvijen je veliki broj metoda identifikacije i karakterizacije novosintetisanih ili izolovanih jedinjenja. Neke od ovih metoda, korišćene u okviru izrade ove doktorske disertacije su: Rendgenska strukturna analiza/rendgenska kristalografija (X–ray crystallography), Nuklearna magnetna rezonanca (*Nuclear Magnetic Resonance –* NMR), Vibraciona infracrvena (*Infrared –* IR) i ultraljubičasta spektroskopija (*Ultraviolet–Visible –* UV–Vis). Pored navedenih eksperimentalnih u širokoj upotrebi su i računarske metode, primarno metode Teorije funkcionala gustine (*Density Functional Theory –* DFT) i metode

molekulske dinamike (*Molecular dynamics simulations* – **MD**) koje su takođe korišćene u izradi ove disertacije.

2.3.1. Rendgenska strukturna analiza

Od dobijenih derivata 4–hidroksikumarina, samo su kristali jedinjenja **CBH9** bili pogodni za određivanje strukture rendgenskom strukturnom analizom. Struktura **CBH9** predstavljena je na sledećoj slici:

Slika 2.1. 2D struktura (*E*)–*N*'–(1–(2,4–dioksoohroman–3–iliden)etil)–3,4,5– trimetoksibenzohidrazida – **CBH9**

Kristalografski podaci za jedinjenje **CBH9** su prikupljeni na sobnoj temperaturi korišćenjem Mo $K\alpha$ zračenja (λ = 0,71073 Å) pomoću *Oxford Diffraction Gemini S* difraktometra. Za prikupljanje i integraciju podataka korišćeni su softverski paketi CrisAlisPro i CrisAlisRED [119].

Konačni parametri ćelije su određeni globalnim preciziranjem od 1400 refleksija $(2,8 < \theta < 24,0^{\circ})$. Određivanje prostorne grupe zasnovano je na analizi klase *Laue* i sistematski odsutnih refleksija. Prikupljeni podaci za **CBH9** korigovani su za efekte apsorpcije korišćenjem *Multi–scan* metode, primenom empirijske korekcije apsorpcije korišćenjem sfernih harmonika [120] kao što je implementirano u SCALE3 ABSPACK [119] algoritmu za skaliranje. Rešenje strukture **CBH9** obavljeno je pomoću programa SHELXT i SHELXL–2018/3 [121]. Određivanje geometrije izvršeno je pomoću programskog paketa PLATON [121], program MERCURY [122] je korišćen za molekularnu grafiku, dok je OLEX2 [123] je korišćen za pripremu materijala za objavljivanje. Podaci o kristalima i eksperimentalni detalji određivanja strukture navedeni su u sledećoj tabeli:

	*
Kristalografski podaci	
Hemijska formula	$C_{21}H_{20}N_2O_7$
Molekulska masa <i>M</i> r	412,39
Kristalni sistem, prostorna grupa	Monoclinic, P21/c
Temperatura (K)	293
a, b, c (Å)	7,6023(5), 28,1600(15), 8,9724(5)
β(°)	100,037 (7)
$V(Å^3)$	1891,4 (2)
Z	4
F(000)	864
D_x (Mg m ⁻³)	1,448
Tip radijacije	Μο Κα
μ (mm ⁻¹)	0,11
Oblik kristala	Prizma
Boja	Bezbojan
Veličina kristala (mm)	0,57 × 0,46 × 0,39
Prikupljeni podaci	
Difraktometar	Xcalibur, Sapphire3, Gemini
Izvor radijacije	fine-focus sealed X-ray tube
Rezolucija detektora (pixels mm ⁻¹)	16,3280
Metoda skeniranja	ω scans
Korekcija apsorpcije	Multi–scan <i>CrysAlis PRO</i> 1.171.41.118a (Rigaku Oxford Diffraction, 2021) Empirijska korekcija apsorpcije implementirana u SCALE3 ABSPACK algoritma skaliranja.
Tmin, Tmax	0,942, 1,000
Broj uočenih i izmerenih [$I > 2\sigma(I)$] refleksija	9038, 4368, 1943
Rint	0,047
θ (°)	$\theta_{max} = 29, 4, \ \theta_{min} = 2.4$
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.690
Range of <i>h</i> , <i>k</i> , <i>l</i>	$h = -10 \rightarrow 9, k = -37 \rightarrow 17, l = -11 \rightarrow 12$
Utanačenje	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.076, 0.139, 1.01

Tabela 2.1. Osnovni kristalografs	ski podaci za CBH9
-----------------------------------	---------------------------

Utanačenje	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0,076, 0,139, 1,01
Broj refleksija	4368
Broj parametara	283
Broj ograničenja	2
$(\Delta/\sigma)_{max}$	< 0,001
$\Delta Q_{\text{max}}, \Delta Q_{\text{min}} (e \text{ Å}^{-3})$	0,23, -0,19

2.3.2. Spektroskopske metode

Vibracioni spekri (IR spektroskopija) novosintetisanih jedinjenja **CBH1–CBH9** snimljeni su na Perkin–Elmer Spectrum One FT–IR spektrometru korišćenjem KBr diska. NMR spektri su snimljeni na Varian Gemini spektrometru (200 MHz za ¹H i 50 MHz za ¹³C) u DMSO–d₆. Kao interni standard za određivanje hemijskih pomeranja (δ) korišćen je tetrametilsilan (TMS). UV–Vis merenja su sprovedena na PerkinElmer, Lambda 365, UV/Vis spektrofotometru. Tačke topljenja određivane su na aparatu za kapilarne tačke topljenja Mel–Temp, model 1001. Elementna mikroanaliza ugljenika, vodonika i azota rađena je u Centru za instrumentalnu analizu, Hemijskog fakulteta u Beogradu. Elementna (C, H, O, N, S) analiza uzoraka je sprovedena na sistemu za elementnu analizu VARIO EL III CHNOS, model–Elementar Analisensisteme GmbH, 2003.

(E)-N'-(1-(2,4-Dioksohroman-3-iliden)etil)benzohidrazid (**CBH1**). Beli prah, t.t. 222-224 °C; Prinos: 0.2611 g (81%), ¹H NMR (200 MHz, DMSOd₆): 15,73 (s, 1H), 11,84 (s, 1H), 7,98 (td, J = 7,5, 6,8, 1,7 Hz, 3H), 7,74 - 7,48 (m, 4H), 7,39 - 7,22 (m, 2H), 2,76 (s, 3H); ¹³C NMR (50 MHz, DMSO-d₆): 179,27, 172,39, 164,93, 153,18, 134,38, 132,71, 131,27, 128,7, 127,96, 125,76, 123,91, 119,74, 116,39, 95,46, 17,74; IR (KBr): 3428 (OH), 3213, 3180 (NH), 3064 (=CH), 2961, 2801 (CH), 1707, 1637, 1609 (C=O), 1561, 1488, 1467(C=C), 1289 (C-O) cm⁻¹; UV (λ max) nm: 233, 332 nm;

C₁₈H₁₄N₂O₄ (FW = 322,32): C, 67,08; N, 8,69; H, 4,38%; nađeno: C, 66,87; N, 8,52; H, 4,15%.

(E)-N'-(1-(2,4-Dioksohroman-3-iliden)etil)-2-hidroksibenzohidrazid (CBH2). Bežprah, t.t. 248-249°C; Prinos: 0,221 g (65,31%), ¹H NMR (200 $MHz, DMSO-d₆) <math>\delta$: 15,95 (s, 1H), 8,00 (dd, *J* = 7,8, 1,6 Hz, 1H), 7,87 (dd, *J* = 7,8, 1,7 Hz, 1H), 7,67 (m, 1H), 7,53-7,40 (m, 1H), 7,40-7,25 (m, 2H), 7,07-6,90 (m, 2H), 2,74 (s, 3H); ¹³C NMR (50 MHz, DMSO-d₆) δ : 178,8, 170,5, 164,3, 161,5, 157,5, 153,1, 134,3, 134,1, 129,9, 125,7, 123,9, 119,6, 119,5, 117,1, 116,4, 116,3, 95,4, 17,6; IR (KBr): 3521 (OH), 3435, 3267 (NH), 3049 (=CH), 2930, 2862 (CH), 1692, 1629, 1608 (C=O), 1547, 1455 (C=C),

1233 (C–O) cm⁻¹; C₁₈H₁₄N₂O₅ (FW = 338,32): C, 63,90; N, 8,28; H, 4,17%; nađeno: C, 63,74; N, 8,45; H, 4,28%.

 $(E)-N'-(1-(2,4-Dioksohroman-3-iliden)etil)-4-hidroksibenzohidrazid (CBH3). Beli prah, t.t. 264-265 °C; Prinos: 0,215 g (63,51%), ¹H NMR (200 MHz, DMSO-d_6) \delta: 15,72 (s, 1H), 11,56 (s, 1H), 10,34 (s, 1H), 7,99 (dd,$ *J* $= 7,8, 1,6 Hz, 1H), 7,90-7,78 (m, 2H), 7,73-7,57 (m, 1H), 7,39-7,23 (m, 2H), 6,96-6,85 (m, 2H), 2,74 (s, 3H); ¹³C NMR (50 MHz, DMSO-d_6) \delta: 179,2, 171,8, 164,6, 161,6, 161,5, 153,2, 134,3, 130,1, 125,7, 123,9, 121,6, 119,8, 116,4, 115,4, 95,3, 17,8; IR (KBr): 3565 (OH), 3435, 3183 (NH), 3057 (=CH), 2964, 2807 (CH), 1666, 1639, 1605 (C=O), 1566, 1490, 1467(C=C), 1566, 149$

1232 (C–O) cm⁻¹; C₁₈H₁₄N₂O₅ (FW = 338,32): C, 63,90; N, 8,28; H, 4,17%; nađeno: C, 63,68; N, 8,40; H, 4,37%.

(E)-N'-(1-(2,4-Dioksohroman-3-iliden)etil)-4-hidroksi-3-metoksibenzohidrazid

(**CBH4**). Svetlo–žuti prah, t.t. 223–224 °C; Prinos: 0,246 g (66,83%), ¹H NMR (200 MHz, DMSO–*d*₆) δ: 15,67 (s, 1H), 11,55 (s, 1H), 9,96 (s, 1H), 8,00 (dd, *J* = 7,8, 1,3 Hz, 1H), 7,67 (ddd, *J* = 8,1, 7,4, 1,7 Hz, 1H), 7,54–7,43 (m, 2H), 7,32 (ddd, *J* = 8,0, 5,3, 1,6 Hz, 2H), 6,92 (d, *J* = 11,3 Hz, 1H), 3,86 (s, 3H), 2,75 (s, 3H); ¹³C NMR (50 MHz, DMSO–*d*₆) δ: 179,3, 175,9, 172,2, 164,6, 161,6, 153,2, 151,1, 147,5, 134,4, 125,8, 123,9, 122,0, 121,8, 119,8, 116,4, 115,3, 111,9, 95,4, 55,9, 17,9; IR (KBr): 3524 (OH), 3388, 3235 (NH), 3090

(=CH), 2944, 2782 (CH), 1675, 1605, 1591 (C=O), 1527, 1484, 1410 (C=C), 1221 (C–O) cm⁻¹; C₁₉H₁₆N₂O₆ (FW = 368,10): C, 61,96; N, 7,61; H, 4,38%; nađeno: C, 61,62; N, 7,43; H, 4,17%.

(E)–N'–(1–(2,4–Dioksohroman–3–iliden)etil)–2,3–dihidroksibenzohidrazid (CBH5). Bež

prah, t.t. 245–247 °C; Prinos: 0,223 g (62,85%), ¹H NMR (200 MHz, DMSO–*d*₆) δ: 15,88 (s, 1H), 8,00 (dd, *J* = 7,8, 1,4 Hz, 1H), 7,76–7,58 (m, 1H), 7,47–7,20 (m, 3H), 7,02 (dd, *J* = 7,8, 1,6 Hz, 1H), 6,80 (t, *J* = 7,9 Hz, 1H), 2,73 (s, 3H); ¹³C NMR (50 MHz, DMSO–*d*₆) δ: 178,9, 171,0, 165,5, 161,5, 153,2, 147,2, 146,2, 134,4, 125,7, 124,0, 119,6, 119,4, 119,1, 116,4, 116,2, 95,5, 17,6; IR (KBr): 3498 (OH), 3386, 3269 (NH), 3050 (=CH), 2964, 2863 (CH), 1703, 1659, 1609 (C=O), 1583, 1524, 1484, 1466 (C=C), 1222 (C–O) cm⁻¹; C₁₈H₁₄N₂O₆ (FW = 354,32): C, 61,02; N, 7,91;

OH

(E)–N'–(1–(2,4–Dioksohroman–3–iliden)etil)–3,4–dihidroksibenzohidrazid (CBH6). Bež prah, t.t. 255–257 °C; Prinos: 0,233 g (65,71%), ¹H NMR OH .OH (200 MHz, DMSO-d₆) δ: 15,71 (s, 1H), 11,51 (s, 1H), 9,86 (s, 1H), 9,45 (s, 1H), 7,99 (dd, J = 7,9, 1,5 Hz, 1H), 7,66 (ddd, J = 8,1, 7,4, 1,7 Hz, 1H), 7,44-7,14 (m, 4H), 6,87 $(d, I = 8,1 \text{ Hz}, 1\text{H}), 2,73 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (50 \text{ MHz}, 1)$ HN DMSO-d₆) δ: 179,2, 171,6, 164,7, 161,6, 153,2, 150,1, 145,3, 134,3, 125,7, 123,9, 121,9, 120,3, 119,8, 116,4, 115,4, 95,3, 17,8; IR (KBr): 3478 (OH), 3419, 3156 (NH), 3066 Ò (=CH), 2973 (CH), 1668, 1641, 1602 (C=O), 1568, 1489,

1457 (C=C), 1222 (C-O) cm⁻¹, C₁₈H₁₄N₂O₆ (FW = 354,32): C, 61,02; N, 7,91; H, 3,98%; nađeno: C, 61,37; N, 7,73; H, 3,69%.

(E)-N'-(1-(2,4-Dioksohroman-3-iliden)etil)-2,3,4-trihidroksibenzohidrazid(CBH7), ŌН Prinos, 0,382 g (77%), C18H14N2O7 (FW=370,39)%: C, 3" .OH 58,38; H, 3,81; N, 7,56; O, 30,24, nadeno: C, 58,16; H, 3,89; N, 7,79; O, 30,16, ¹H NMR (DMSO-d₆, 200 MHz) (δ ppm): 2,72 (s, 3H), 6,46 (s, 1H) 7,42-7,22 (m, 3H), 7,67 (ddd, ³*J*_{H-7, H-6} = 8,2 Hz, ³*J*_{H-7, H-8} = 7,3 Hz, 1H), 8,07–7,93 (m, 1H), 8,80 (s, 1H), 9,97 (s, 1H), 11,38 (s, 2H), 15,83 (s, 1H),¹³C NMR (DMSO-d₆, 50 MHz) δ (ppm): 17,9, 95,4, 106,5, 107,7, 134,3, 149,5, 150,9, 153,1, 161,5, 166,4, 171,0, 178,9, IR (KBr) v (cm⁻¹): 3484 (H–N2); 3379 (H–O4") 3258

(H-O3"), 3195 (H-O2"); 2926 (H-N1); 1651, 1608 (C=O); 1555, 1468, 1466 (C-C); 1276 (C-O),

(E)-N'-(1-(2,4-Dioksohroman-3-iliden)etil)-3,4,5-trihidroksibenzohidrazid(CBH8),

HC

ŃΗ

HŊ

4

1

Prinos, 0,259 g (68%), C18H14N2O7 (FW=370,39)%: C, 58,38; H, 3,81; N, 7,56; O, 30,24, nadeno: C, 58,26; H, 3,77; N, 7,77; O, 30,56 ¹H NMR (DMSO-d₆, 200 MHz) (δ ppm): 2,73 (s, 3H), 6,95 (s, 2H) 7,41–7,22 (m, 2H), 7,66 (ddd, ³*J* H-7, H-6 = 8,2 Hz, ³*J* H-7, H-8 = 7,3 Hz, 1H), 7,99 $(d_{13}I_{H-5, H-6} = 7,8 \text{ Hz}, 1\text{H}), 9,37 (s, 2\text{H}), 9,05 (s, 1\text{H}),$ 11,47 (s, 1H), 15,72 (s, 1H), ¹³C NMR (DMSO-d₆, 50 MHz) δ (ppm): 17,8, 95,2, 107,5, 116,4, 119,9, 120,8, 124,0, 125,8, 134,3, 138,1, 145,8, 153,2, 161,0, 165,0, 171,4, 179,2, IR (KBr) v (cm⁻¹): 3440 (H–N2); 3340 (H–

O4") 3240 (H-O3", H-O2"); 2965 (H-N1); 1665, 1605 (C=O); 1551, 1501, 1333 (C-C); 1233, 1128 (C-O).

(E)-N'-(1-(2,4-Dioksohroman-3-iliden)etil)-3,4,5-trimetoksibenzohidrazid (CBH9),

Prinos, 0,359 g (87%), C₂₁H₂₀N₂O₇ (FW=412,39)%: C, 61,16; H, 4,89; N, 6,79; O, 27,16, nađeno: C, 61,08; H, 4,98; N, 6,71; O, 27,08, ¹H NMR (DMSO–d₆, 200 MHz) (δ ppm): 2,36 (s, 3H), 3,74 (s, 3H,), 3,87 (s, 6H) 7,30 (m, 4H), 7,67 (m, ³J H-7, H-6 = 7,73 Hz, ³J H-7, H-8 = 7,73 Hz, 1H), 7,99 (d, ³J H-5, H-6 = 7,74 Hz, 1H), 11,75 (bs, 1H), 15,59 (1H, bs, N1), ¹³C NMR (DMSO–d₆, 50 MHz) δ (ppm): 17,9, 56,4, 60,4, 95,6, 105,7, 116,5, 119,8, 124,0, 125,8, 126,3, 134,5, 141,3, 152,9, 153,2, 161,5, 164,5, 173,1, 179,4, **IR** (KBr) v (cm⁻¹): 3440 (H–

N2); 3008 (C–H); 2973, 2926 (H–N1); 1713, 1694, 1609 (C=O); 1586, 1496 (C–C); 1236, 1128 (C–O). **UV–Vis** λ_{max} (Metanol): 333 nm.

2.3.3. Računarske metode

Struktura dobijena rendgenskom strukturnom analizom korišćena je kao početna struktura za dalja teorijska istraživanja i *"in–depth"* analizu strukture. Struktura ispitivanog jedinjenja je optimizovana u programskom paketu Gaussian09 [124] korišćenjem tri teorijska modela **B3LYP–D3BJ** [125–128], **M062X** [129] i **APFD** [130] u kombinaciji sa 6–311++G(d,p) bazisnim skupom [131]. Model polarizovanog kontinuuma sličnog provodniku (*Conductor–Like Polarizable Continuum Model –* **CPCM**) [132] je korišćen za optimizaciju geometrije i proračune energije, kako bi oponašao efekat rastvarača. ¹H i ¹³C NMR hemijska pomeranja su izračunata u okviru pristupa nezavisne atomske orbite (*Gauge Independent Atomic Orbital –* GIAO) [133,134] u DMSO kao rastvaraču. Teorija funkcionala gustine zavisne od vremena (*Time Depended Density Functional Theory* **TD–DFT**) je korišćena za reprodukciju eksperimentalnog UV–Vis spektra i apsorpcionih prelaza u metanolu.

Kako bi se procenili ADMET (*Absorption, Distribution, Metabolism, Excretion, and Toxicity*) parametri i opisali farmakokinetički i toksikološki profili dobijenih jedinjenja koristiće se ADMETlab 2.0 [135], a validacija dobijenih rezultata SwissADME [136] i ProToxII webservera [137].

Takođe, kako je poznato da se transport kumarinskih derivata u organizmu obavlja pomoću albumina, korišćenjem metoda molekulskog dokinga i molekulske dinamike ispitivano je vezivanje kumarinskih derivata za albumin. Za molekulski doking korišćen je AutoDock4.2 implementiran u AMDock grafički interfejs, dok će se za simulacije molekulske dinamike koristiti AMBER22 programski paket. Topologije i ulazne datoteke potrebne za MD generisane su pomoću CharmmGUI servera [138], prateći metodologiju datu u prethodnim istraživanjima [117,118,139,140].

2.4. Eksperimentalni testovi za određivanje antioksidativnog potencijala

In vitro ispitivanje antioksidativnog potencijala je fundamentalni eksperimentalni pristup koji se koristi u naučnim istraživanjima kako bi se ispitao kapacitet različitih jedinjenja i supstanci za borbu protiv oksidativnog stresa. Eksperimentalne *in vitro* metode omogućavaju istraživačima da proučavaju antioksidativna svojstva jedinjenja van živog organizma, nudeći kontrolisane uslove i precizna merenja. Ove metodologije obuhvataju niz testova dizajniranih za procenu aktivnosti uklanjanja radikala, smanjenja njihove aktivnosti, sposobnosti helatiranja metala i još mnogo toga, pružajući vredan uvid u mehanizme i efikasnost potencijalnih antioksidanata.

2.4.1. Redukcija 2,2-difenil-1-pikrilhidrazil radikala - DPPH test

Prvi test korišćen za procenu in vitro antioksidativne aktivnosti CBH1-CBH9 je DPPH test. Ispitivane supstance su rastvorene u odgovarajućim rastvaračima da bi se napravile serije određenih koncentracija. Kako su neka od ispitivanih jedinjenja nerastvorljiva u vodi, pripremljeni su rastvori u DMSO-u, a zatim je taj rastvor pomešan sa metanolom. Da bi se izbegle smetnje koje potiču od moguće degradacije DPPH radikala, pripremljen je svež rastvor radikala (0,05 mM u metanolu) koji je čuvan u tamnoj boci. U odvojene kivete prenete su jednake količine rastvora svakog ispitivanog jedinjenja i rastvora DPPH radikala. Da bi se uzela u obzir potencijalna interferencija, korišćene su slepe probe (bez DPPH radikala) za svaku ispitivanu supstancu. Tokom 30 i 60 minuta, reakcione smeše su inkubirane u mraku na sobnoj temperaturi. Posle inkubacije, merenja apsorbancije na 517 nm su urađena spektrofotometrijski. Zabeležene su vrednosti apsorbancije svakog testiranog rastvora i slepe probe. Sva merenja izvedena su u tri probe, a rezultat je izražen kao srednja vrednost ± SD (standardna devijacija) [88]. Da bi se potvrdio učinak testa, referentni antioksidanti (nordihidrogvajaretinska kiselina (NDGA) i kvercetin) su korišćeni kao pozitivne kontrole.

2.4.2. Redukcija 2,2'–azino–bis(3–etilbenzotiazolin–6–sulfonske kiseline) – ABTS test

ABTS test je takođe korišćen za procenu antiradikalske aktivnosti novosintetisanih antioksidanata *in vitro*. Ispitivane supstance su rastvorene u odgovarajućim rastvaračima da bi se napravile serije određenih koncentracija. Kako su neka od ovih jedinjenja slabo rastvorna u vodi, rastvorena su u DMSO–u, a zatim je taj rastvor pomešan sa metanolom, kao i pri DPPH testu. Da bi se obezbedila proizvodnja radikala, rastvor radikal katjona (ABTS^{•+}) je napravljen kombinovanjem ABTS–a sa kalijum persulfatom sa kojim je ostavljen da reaguje u mraku tokom određenog vremenskog perioda (16h). Na dan izvođenja eksperimenta, osnovni rastvor ABTS^{•+} razblažen je sa metanolom kako bi se dobio radni rastvor čija je apsorbancija približno 0,70 na λ =734 nm. Aktivnost uklanjanja slobodnih radikala procenjena je mešanjem 1000 μL razblaženog ABTS^{•+} sa 20 μL **CBH1–CBH9** različite koncentracije i 980 μL metanola. Merenje antioksidativne aktivnosti novosintetisanih jedinjenja rađeno je nakon jednog minuta inkubiranja [141]. Obezbojenje rastvora označavalo je inaktivaciju ABTS^{•+}.

2.4.3. Određivanje sposobnosti redukcije jona gvožđa – FRAP test

FRAP test je još jedna eksperimentalna metoda korišćena za kombinovano *in vitro* ispitivanje antioksidativnog potencijala i redukcione sposobnosti **CBH1–CBH9**. Osnovni rastvori testiranih jedinjenja su pripremljeni u DMSO-u, a zatim su odgovarajuća razblaženja dobijena korišćenjem odgovarajuće količine fosfatnog pufera (pH=7,4). Nakon toga 500 µL razblaženih uzoraka je pomešano sa 250 µL 1% rastvora kalijum fericijanida i uzorci inkubirani 20 minuta na 50 °C. Kada je preiod inkubacije završen, pripremljen je uzorak za snimanje mešanjem 500 µL uzorka sa 500 µL 10% trihlorsirćetne kiseline, 100 µL 0,1% gvožđe hlorida i 500 µL dejonizovane vode. Ovako dobijena smeša je podvrgnuta periodu inkubacije od 10 minuta na sobnoj temperaturi, nakon čega je merena apsorbancija na talasnoj dužini od 700 nm. Koncentracije ispitivanih jedinjenja i referentnog standarda askorbinske kiseline u uzorku bile su 10 µM.

2.4.4. Sposobnost inaktivacije hidroksi radikala – EPR merenja

Ispitivanje sposobnosti CBH1 da inaktivira hidroksi radikal vršeno je primenom metode elektronske paramagnetne rezonantne spektroskopije (Electron Paramagnetic Resonance – EPR). EPR eksperimenti su izvedeni na sobnoj temperaturi (293 K) na Bruker EMX Nano X-band (9,65 GHz) spektrometru pod sledećim uslovima: slabljenje snage je 10 dB, amplituda modulacije je 2 mT, frekvencija modulacije je 100 kHz i vreme pomeranja je 120 sekundi. Svaki eksperiment u alkalnim uzorcima izveden je u četiri skeniranja, tokom kojih je signal ostao stabilan. Enzo Life Sciences je obezbedio DEPMPO spin-trap, koji je prečišćen prema protokolu koji su opisali Jackson i saradnici [28]. Standardna Fentonova reakcija je korišćena za dobijanje hidroksil radikala ('OH) korišćenjem što niže koncentracije reaktanata kako bi se smanjila jonska jačina rastvora i odložila proizvodnja nerastvornog Fe(OH)² koji se lako taloži, što dovodi do nemogućnosti stvaranja •OH. Ispitivano jedinjenje je rastvoreno u MeOH u koncentraciji od 15 mM i zatim razblaženo u 10 mM TRIS puferu do eksperimentalne koncentracije osnovnog rastvora od 15 mM. U Fentonovoj smeši, konačna koncentracija **CBH1** je bila 10 µM. Da bi se izbeglo dejstvo rastvarača, EPR spektri su snimani paralelno sa identičnom količinom MeOH, koji je korišćen za početno rastvaranje jedinjenja, i TRIS, koji je korišćen za razblaživanje i postizanje optimalne koncentracije, kao i održavanje pH na željenoj vrednosti. Intenziteti drugog vrha osmolinijskog spektra DEPMPO-OH adukta su upoređeni da bi se procenile kvantitativne razlike u antioksidativnim aktivnostima [142]. Kapacitet ispitivanog

jedinjenja da eliminiše hidroksi radikal procenjen je na osnovu razlike između intenziteta EPR signala dobijenih u probama sa i bez dodavanja ispitivanog jedinjenja.

2.5. Eksperimentalni testovi za određivanje redoks statusa

Eksperimentalni testovi za određivanje redoks statusa su kritični u određivanju ravnoteže oksidanata i antioksidanata u biološkim sistemima. Ovi testovi pružaju vredne informacije o nivoima oksidativnog stresa i efikasnosti endogenih i egzogenih antioksidanata. Testovi zasnovani na merenju reaktivnih vrsta kiseonika i aktivnosti antioksidativnih enzima, kao što su superoksid dismutaza (SOD), katalaza i glutation peroksidaza, su uobičajene eksperimentalne metode. Štaviše, kvantifikacija antioksidativnog potencijala kao što je ukupni antioksidativni kapacitet (TAC) i nivoi specifičnih antioksidanata kao što su glutation i askorbinska kiselina su kritični za razumevanje ukupnog redoks statusa. Ovi eksperimentalni pristupi unapređuju naše razumevanje bolesti povezanih sa oksidativnim stresom i pomažu u razvoju potencijalnih terapijskih intervencija koje imaju za cilj obnavljanje redoks ravnoteže.

2.5.1. Određivanje koncentracije superoksid radikal anjona (O2•-)

Nitro plavo tetrazolijum (*nitro–blue tetrazolium* – **NBT**) test je uobičajeno korišćen dijagnostički test za određivanje redoks statusa, posebno oksidativne aktivnosti fagocitnih ćelija u imunološkom sistemu. Fagociti, koji uključuju neutrofile i makrofage, igraju ključnu ulogu u borbi protiv mikrobnih infekcija tako što proizvode reaktivne vrste kiseonika tokom oksidativnog stresa. Ovaj test zasniva se na redukciji nitroblue–tetrazolijuma (žuta boja) do nitroblue–formazana (od plave do sivo–crne boje). Prvi korak ovog testa podrazumeva zasejavanje ćelija na ploču sa 96 bunarića (5 × 10⁴ ćelija/bunariću), a potom i tretiranje sa 100 µl ispitivanog jedinjenja (1, 2, 5 i 10 µg ml–1). Nakon određenog perioda inkubacije dodato je 10 µl rastvora NBT u koncentraciji od 5 mg ml⁻¹, nakon čega je usledio novi period inkubacije od 45 minuta na 37 °C. Na kraju inkubacije, 10 µl DMSO je dodato u uzorak i apsorbancije su očitane na ELISA (ELISA RT–2100C) čitaču na 550 nm.

2.5.2. Određivanje koncentracije malondialdehida (MDA)

Određivanje koncentracije malondialdehida (**MDA**) je široko korišćena metoda u biohemijskim i biomedicinskim istraživanjima za procenu oksidativnog stresa i nivoa peroksidacije lipida u biološkim sistemima. Lipidna peroksidacija je proces koji uključuje oksidativnu degradaciju nezasićenih masnih kiselina koje se nalaze u ćelijskim membranama, što rezultira stvaranjem različitih reaktivnih proizvoda, od kojih je jedan MDA. Nivoi MDA služe kao biomarker za oksidativni stres i oštećenje ćelija uzrokovano slobodnim radikalima i reaktivnim vrstama kiseonika. Prekomerna peroksidacija lipida i povišeni nivoi MDA su povezani sa brojnim patološkim stanjima, uključujući kardiovaskularne bolesti, neurodegenerativne poremećaje i bolesti povezane sa upalom.

Analiza reakcije supstanci sa tiobarbituratnom kiselinom (Thiobarbituric Acid Reactive Species - TBARS) je jedna od najčešće korišćenih metoda za određivanje koncentracije MDA. MDA reaguje sa TBA pri čemu se formira kompleks ružičaste boje koji se može meriti spektrofotometrijski. Intenzitet boje je proporcionalan koncentraciji MDA u uzorku. TBARS test je sredstvo za istraživače i kliničare koji proučavaju stanja povezana sa oksidativnim stresom, jer je brz i jednostavan način za procenu nivoa peroksidacije lipida. Međutim, iako se TBARS test široko koristi, on ima ograničenja, kao što je potencijalna interferencija od drugih jedinjenja koja mogu da reaguju sa TBA. Ovaj test se često koristi u kombinaciji sa drugim markerima i tehnikama da bi se dobila sveobuhvatnija slika oksidativnog stresa i peroksidacije lipida u biološkim sistemima. Pomenuti test je u okviru ove disertacije rađen prateći sledeću metodologiju: Ćelije su zasejane na ploču sa 6 bunarića (10º ćelija po bunariću) i tretirane sa 100 µl ispitivanih jedinjenja (1, 2, 5 i 10 µg ml-1). Apsorbancije su određene pomoću Eppendorf BioPhotometer plus biofotometra na 405 nm. Koncentracija proteina je određena na osnovu faktora dobijenog iz standardne krive. Preostali supernatant je pomešan sa 1 ml reakcione smeše koja sadrži od 15% trihlorsirćetne kiseline; 0,375% tiobarbituratne i 0,25 M hlorovodonične kiseline (TCA-TBA-HCl). Reakciona smeša je zagrejana na 90 °C, 30 min, zatim hlađena 5 min na ledu i mešana na vorteksu (10 min na 6600 rpm, 4 °C). Nakon toga, supernatant je prebačen na ploču sa 96 binarića (100 µl po bunarčiću) a zatim je merena apsorbancija na ELISA (ELISA RT-2100C) čitaču na 405 nm. Koncentracija MDA je izračunata prema formuli koja je opisana u radu Buege i Austa, 1987. godine [143].

2.5.3. Određivanje koncentracije redukovanog glutationa (GSH)

Određivanje koncentracije glutationa (GSH) je važna analitička procedura u biohemiji i ćelijskoj biologiji jer glutation igra važnu ulogu u ćelijskoj antioksidativnoj odbrani, detoksikaciji i redoks regulaciji. Glutation se nalazi u redukovanom (GSH) i oksidovanom (GSSG) obliku, a odnos GSH prema GSSG unutar ćelije ili tkiva može se koristiti za procenu ćelijskog redoks statusa i oksidativnog stresa. Za određivanje koncentracije glutationa koristi se nekoliko metoda:

- Elmanov test (5,5'-ditiobis(2-nitrobenzoeva kiselina DTNB) predstavlja popularan metod za merenje koncentracije redukovanog glutationa. Reakcija GSH sa Ellmanovim reagensom dovodi do formiranja žuto obojenog kompleksa koji se može meriti spektrofotometrijski. Ovaj test se zasniva na činjenici da GSH redukuje DTNB, što rezultira oslobađanjem 2-nitro-5-tiobenzoeve kiseline i formiranjem boje.
- HPLC (tečna hromatografija visokih performansi): HPLC je efikasna tehnika za odvajanje i kvantifikaciju molekula u uzorku. Ovom metodom je moguće izolovati i kvantifikovati GSH i GSSG odvojeno. Prilikom kvantifikacije oblika glutationa, HPLC omogućava visoku preciznost i tačnost.
- 3. LC–MS (tečna hromatografija–masena spektrometrija): LC–MS je veoma osetljiva i specifična metoda za identifikaciju i kvantifikaciju jedinjenja u uzorku. Može se

koristiti za određivanje koncentracija GSH i GSSG, kao i njihovih apsolutnih koncentracija i odnosa.

- 4. Enzimski testovi: Enzimski testovi koriste specifične enzime za katalizaciju reakcija povezanih sa glutationom. Glutation reduktaza, na primer, može katalizovati konverziju GSSG u GSH, a brzina ove reakcije se može izračunati indirektno, određivanjem koncentracije GSSG.
- 5. Fluorescentni testovi: Fluorescentne probe se mogu koristiti za specifično vezivanje za GSH, formirajući fluorescentne komplekse. Intenzitet fluorescencije se tada može povezati sa koncentracijom GSH.
- 6. Nuklearna magnetna rezonanca (NMR): NMR spektroskopija može pružiti strukturne informacije o molekulima kao što je GSH. Može se koristiti za određivanje koncentracija GSH u složenim smešama.

Metod izbora je određen faktorima kao što su osetljivost, specifičnost, složenost uzorka i dostupnost opreme. U okviru ove doktorske disertacije korišćen je Elmanov test praćenjem sledeće metodologije: Prvi korak podrazumevao je zasejavanje ćelija u ploči sa 96 bunarića (5 × 104 ćelije/bunariću) i tretiranje sa 100 µl ispitivanog jedinjenja (1, 2, 5 i 10 µg ml⁻¹). Nakon perioda inkubacije, ploča sa uzorcima je centrifugirana na 1000 rpm tokom 10 min. Nakon centrifugiranja, medijum je zamenjen sa 100 µl 2,5% sulfosalicilne kiseline, nakon čega je usledila inkubacija u ledu tokom 15 minuta. Nakon vremena inkubacije, ploča je centrifugirana 15 minuta na 1000 rpm. Potom je u svaki bunarić dodato 100 µl reakcione smeše (reakciona smeša koja sadrži 1 mM NADPH, 0,7 U GSH reduktaze po mililitru reakcione smeše, 1 mM DTNB koji je rastvoren u DMSO i dopunjen fosfatnim puferom (PBS) do potrebne zapremine). Promena intenziteta boje praćena je na ELISA (ELISA RT–2100C) čitaču na 405 nm.

3. REZULTATI I DISKUSIJA

3.1.1. Rendgenska strukturna i DFT analiza strukturnih parametara CBH9

Jedinjenje **CBH9** kristališe u mononuklearnom kristalnom sistemu i prostornoj grupi P2^{1/c} u kojoj asimetrični deo jedinične ćelije sadrži jedan neutralni molekul. Kristalografska struktura **CBH9** sa usvojenom šemom numerisanja atoma prikazana je na slici 3.1.

Slika 3.1. Kristalna struktura **CBH9** sa numerisanim atomima. Intramolekulska vodonična veza prikazana je pomoću isprekidane linije

Strukturna karakteristika **CBH9** koja će probuditi interesovanje svakog hemičara koji se bavi jedinjenjima koja ispoljavaju antioksidativni efekat jeste formiranje intramolekulske N—H···O vodonične veze koja formira *pseudo*–šestočlani prsten (C1' \rightarrow N1). Formiranje ove vodonične veze dovodi do izjednačavanja dužine veze C3–C4 (1,430 Å) i C3=C1' (1,420 Å), iako su veze predstavljene (formalno) kao jednostruka i dvostruka veza. Ova strukturna karakteristika objašnjena je produženom delokalizacijom π -elektrona unutar pomenutog sistema što je, kao što je već napomenuto u uvodu, karakteristika jedinjenja sa dobrim antioksidativnim potencijalom [144]. Da bi se odredio teorijski model koji najbolje opisuje strukturne karakteristike **CBH1–CBH9**, geometrijski parametri kao što su dužine veza, uglovi i diedarski uglovi **CBH9** dobijeni optimizacijom strukture pomoću tri hibridna DFT funkcionala, **B3LYP–D3BJ**, **M062X** i **APFD**, biće upoređeni sa eksperimentalno dobijenim parametrima. Optimizovana geometrija ispitivanog jedinjenja prikazana je na slici 3.2., dok su dužine veza prikazane u tabeli 3.1.

Dužino voza	Eksperimentalno		Teorijski (Å)	
Duzine veza	(Å)	B3LYP–D3BJ	M06-2X	APFD
O1–C2	1,382 (4)	1,391	1,379	1,386
C2–C3	1,449 (4)	1,461	1,463	1,459
C3–C4	1,430 (4)	1,453	1,450	1,447
C4-C10	1,469 (4)	1,468	1,473	1,463
C10-C5	1,393 (4)	1,402	1,399	1,399
C5–C6	1,377 (4)	1,384	1,382	1,383
C6–C7	1,380 (5)	1,401	1,399	1,400
C7–C8	1,370 (4)	1,387	1,384	1,385
C8–C9	1,384 (4)	1,395	1,394	1,393
C9–C10	1,371 (4)	1,394	1,389	1,393
C9-O1	1,379 (4)	1,363	1,359	1,356
C3–C1'	1,420 (4)	1,418	1,413	1,416
C1'- C2'	1,493 (4)	1,494	1,495	1,489
C1'- N1	1,320 (4)	1,337	1,334	1,333
N1-N2	1,389 (3)	1,383	1,379	1,372
N2–C7''	1,360 (4)	1,397	1,392	1,392
C7"– C1"	1,484 (4)	1,490	1,493	1,486
C1"- C2"	1,391 (4)	1,389	1,395	1,395
C2''- C3''	1,381 (4)	1,397	1,396	1,396
C3''- C4''	1,396 (4)	1,405	1,401	1,402
C4"– C5"	1,398 (4)	1,406	1,401	1,404
C5"– C6"	1,383 (4)	1,394	1,393	1,393
C6"– C1"	1,384 (4)	1,393	1,390	1,391
C2 – O2	1,205 (4)	1,208	1,202	1,206
C4 – O4	1,261 (3)	1,250	1,239	1,247
C7''- O7''	1,231 (3)	1,214	1,206	1,212
C3''- O3''	1,368 (4)	1,357	1,351	1,351
O3"– C8"	1,423 (4)	1,421	1,413	1,411
C4"- O9"	1,361 (4)	1,360	1,356	1,355
O4"– C9"	1,419 (4)	1,434	1,425	1,423
C5"- O5"	1,360 (4)	1,357	1,351	1,350
O5''-10''	1,422 (4)	1,425	1,416	1,415
MAE (Å)	/	0,010	0,011	0,011
R	/	0,984	0,983	0,980

Tabela 3.1. Dužine veza određene eksperimentalno i teorijski za CBH9

Poređenje geometrijskih i spektralnih parametara omogućava da se izabere adekvatan funkcional koji će najbolje opisati strukture benzohidrazidskih derivata za koje nije dobijena kristalna struktura. Za poređenje eksperimentalnih i teoretskih vrednosti korišćena su dva statistička parametra: koeficijent korelacije (*Correlation coefficient* – **R**) i srednja apsolutna greška (*Mean Absolute Error* – **MAE**). Teorijski metod B3LYP–D3BJ dao je najviši R i najnižu MAE vrednost između eksperimentalno i teorijski utvrđenih dužina veze (R=0,984, MAE=0,010 Å). Treba istaći da su i druge

dve metode M062X (R=0,983, MAE=0,011 Å) i APFD (R=0,980, MAE=0,011 Å) pokazale odlično slaganje sa ekpserimentalnim vrednostima.

Slika 3.2. Optimizovana geometrija CBH9 (B3LYP–D3BJ/6–311G++(d,p))

Poređenjem uglova veza i diedarskih uglova (torzija) dobijenih eksperimentalnim metodama dolazi se do sličnih zaključaka (Tabele P1 i P2). Naime, i za ove veličine B3LYP–D3BJ pokazuje najmanju srednju apsolutnu grešku i najveći koeficijent korelacije.

3.1.2. Ispitivanje stabilnosti pomoću molekulske dinamike

Da bi se ispitalo dinamičko ponašanje i stabilnost geometrije **CBH9** u vremenskom okviru urađene su MD simulacije u trajanju od 100 ns, u gasovitom stanju i vodenom rastvoru. Analiza MD trajektorija otkrila je sličan RMSD trend u ova dva medijuma (Slika 3.3.), uprkos nekim izrazitim fluktuacijama. Klaster analiza (*Cluster analysis*) omogućava identifikaciju još 10 izolovanih konformera kao što je prikazano na slici 3.4. Deset izolovanih konformera su veoma slični strukturi dobijenoj iz X–ray ili DFT kalkulacija i razlikuju se u opsegu od 0–7 kcal mol⁻¹ od početne geometrije. Kao što je prikazano u tabeli 3.2., vrednosti za ϱ i θ diedarske uglove razlikuju se za oko 10°, pri čemu je vrednost τ nešto veća (Tabela 3.2.).

Slika 3.3. Superpozicija RMSD vrednosti izračunatih duž MD trajektrorije (100 ns) u gasnoj fazi (plava) i vodi (narandžasta)

Slika 3.4. A) Reprezentativni klasteri gasne faze, sa najzastupljenijom geometrijom prikazanom plavom bojom; B) Reprezentativni klasteri rastvarača, sa najzastupljenijom geometrijom prikazanom narandžastom bojom; C) Superpozicija između najzastupljenije geometrije u gasnoj fazi (plava) i vodi (narandžasta); D) Superpozicija između najreprezentativnijeg konformera ekstrapolisanog iz simulacije u vodi (narandžasta) i DFT/B3LYP optimizovane geometrije u vodi (cijan)

Geometrijske razlike između najzastupljenije MD strukture i X–ray/DFT optimizovane strukture posledica su male razlike u položaju perifernih aromatičnih prstenova. Razlika se može objasniti činjenicom da su vrednosti torzionih uglova koji povezuju aromatične delove rezultat delikatne ravnoteže između sternih smetnji i delokalizacije elektrona, pri čemu se elektronska gustina ignoriše u simulacijama koje koriste klasičnu dinamiku.

	iz MD sinulacija. nustrativni prikaz 7, 0, 0 dat je u tabeli										
Uglovi		Reprezentativni konformeri									
	1	2	3	4	5	6	7	8	9	10	
Q	-124,8	138,7	138,7	-129,9	-136,2	156,2	-125,5	123,9	117,6	149,3	
τ	59,4	-84,1	-84,1	71,4	-122,6	-72,5	66,0	-78,6	-68,5	93,8	
θ	-165,4	-174,7	-174,7	176,8	178,3	174,1	173,9	-171,1	-173,2	-179,6	
					H N T N H	sin					

Tabela 3.2. Vrednosti τ , ϱ , θ diedarskih uglova za 10 reprezentativnih konformera dobijeni
iz MD simulacija. Ilustrativni prikaz τ, ϱ, θ dat je u tabeli

Iz MD simulacije možemo zaključiti da ispitivani sistem zadržava svoju opštu topologiju tokom posmatranog vremenskog intervala i ostvaruje određene fluktuacije sa manjom razlikom u glavnim diedarskim uglovima, što je posledica korišćenja principa klasične dinamike koji ne uzimaju u obzir elektronske efekte.

3.2. Analiza spektralnih osobina CBH9

3.2.1. Analiza NMR spektralnih podataka **CBH9** i određivanje najboljeg teorijskog modela za simulaciju NMR spektara

Slike P1 i P2 prikazuju eksperimentalno dobijene spektre ispitivanog jedinjenja u DMSO–*d*₆. Dalje, odgovarajući spektri iz prethodno navedenih različitih teorijskih modela su simulirani u istom rastvaraču korišćenjem GIAO metode. U tabelama 3.3. i 3.4. prikazani su eksperimentalna hemijska pomeranja za ¹H i ¹³C NMR spektre, kao i izračunati podaci za najstabilniji konformer. Na osnovu statističkih parametara R i MAE, može je zaključiti da je B3LYP–D3BJ metoda i u ovom slučaju reprodukovala eksperimentalne vrednosti hemijskih pomeranja (¹H NMR (R=0,998, MAE=0,23 ppm)) i ¹³C NMR (R=0,999, MAE=2,89 ppm)) sa najvećom tačnošću i korespondencijom sa eksperimentalnim podacima.

	¹ H NMR, δ (ppm)					
Atomi	Ekonorimontolni	Teorijski				
	Eksperimentami	B3LYP-D3BJ	M06-2X	APF-D		
C2'–CH ₃	2,74	2,76	2,84	2,73		
C9"–OCH ₃	3,74	3,94	3,82	3,85		
C8"/ C10"-OCH3	3,87	4,00	4,08	3,93		
H2", H6"	7,30	7,22	7,62	7,30		
H8	7,30	7,46	8,20	7,54		
H6	7,30	7,56	8,33	7,66		
H7	7,67	7,86	8,56	7,98		
H5	7,99	8,51	9,26	8,60		
N2–H	11,75	/	/	/		
N1–H	15,59	14,63	14,43	15,19		
MAE	/	0,23	0,62	0,20		
R	/	0,998	0,985	0,998		

Tabela 3.3. Eksperimentalne i teorijski određene vrednosti hemijskih pomeranja u ¹H NMR spektrima **CBH9**

¹H NMR spektar pokazuje tri grupe signala. Protoni C2' metil grupe imaju najmanje hemijsko pomeranje (δ_{C2'-H3}=2,74 ppm), što se dobro reprodukuje u teorijskim spektrima (δ_{C2'-H3}=2,76 ppm). Sa druge strane, dva signala generišu protoni dve simetrične metoksi grupe C8"/C10" (δ_{C8"/C10"-H}=3,87 ppm) i protoni grupe C9" (δ_{C2'-H3}=3,74 ppm). Aromatični protoni su predstavljeni signalima u drugom regionu ¹H NMR spektra, koji se nalaze između 7,30 i 7,99 ppm u eksperimentalnom spektru i između 7,22 i 8,51 ppm u simuliranom (B3LYP–D3BJ) spektru. Konačno, treću grupu protona formiraju protoni iz polarnih N–H grupa. Proton N2–H grupe pojavljuju se na nešto nižem hemijskom pomeranju (δ_{N2-H}=11,75 ppm) usled odsustva vodonične veze. Prisustvo vodonične veze "povlači" elektronsku gustinu sa površine protona prema heteroatomu, čineći njegovo hemijsko pomeranje većim. Sa druge strane proton N1–H grupe ima najveće hemijsko pomeranje ($\delta_{N1-H}=15,59$ ppm) što je posledica stabilizacije i negativnih induktivnih efekata azota i kiseonika u *pseudo*– šestočlanom prstenu. Vrednost hemijskog pomeranja simuliranog spektra ($\delta_{N1-H}=14,63$) se slaže sa eksperimentalnom vrednošću. U teorijskim spektrima, implicitni model rastvarača i nedostatak direktne interakcije molekula rastvarača sa polarnim grupama potcenjuju vrednosti hemijskih pomeranja ovih protona. Kao rezultat toga, simulirane vrednosti hemijskih pomeranja protona polarnih grupa se ne razmatraju.

	¹³ C NMR, δ (ppm)						
Atomi		Teorijski					
	Eksperimentalni	B3LYP– D3BJ	M06–2X	APF-D			
C2'-CH3	17,9	14,1	17,0	18,3			
C8"/C10"-OCH3	56,4	51,8	51,8	50,3			
С9"-ОСНЗ	60,4	56,2	57,1	54,5			
C3	95,6	98,0	107,4	95,8			
C2",C6"	105,7	101,6	113,2	100,4			
C8	116,5	116,0	130,2	115,5			
C10	119,8	120,1	132,6	117,9			
C6	124,0	123,6	139,3	122,7			
C5	125,8	127,7	141,5	126,1			
C1"	126,3	127,8	142,4	126,8			
C7	134,5	135,7	152,2	135,1			
C4"	141,3	142,4	152,3	140,2			
C10	152,9	155,6	167,4	153,3			
C3"	152,9	155,9	167,8	153,5			
C5"	153,2	157,0	168,1	154,4			
С9	161,5	162,2	172,8	160,2			
C7"	164,5	168,7	180,1	166,5			
C4	173,1	183,1	197,9	180,3			
C1'	179,4	183,8	201,1	180,6			
MAE	/	2,89	13,05	2,04			
R	/	0,999	0,997	0,998			

Tabela 3.4. Eksperimentalne i teorijski određene vrednosti hemijskih pomeranja u ¹³C NMR spektrima **CBH9**

Eksperimentalna i teorijska hemijska pomeranja za atome ugljenika su veoma slična (Tabela 3.4.), zbog rigidnosti kumarinskog dela molekula i delokalizacije elektrona na celoj strukturi. Atom ugljenika C2' metil grupe ima najnižu vrednost hemijskog pomeranja (δ_{C2'-CH3}=17,9 ppm). Simetrični atomi metoksi grupe C8"/C10" (δ_{C8"/C10"}=56,4 ppm) imaju nešto nižu vrednost hemijskog pomeranja od atoma C9" (δ_{C9"}=60,4 ppm). Signali aromatičnog atoma ugljenika su detektovani u intervalu između 105,7 i 164,5 ppm u eksperimentalnom spektru i u intervalu od 101,6 do 168,7 ppm u simuliranom spektru. Aromatični ugljenici C2" i C6" imaju niže hemijsko pomeranje (105,7 ppm) od atoma C3" (152,9 ppm), C4" (141,3 ppm) i C5" (153,2 ppm) za koje su vezane grupe –OCH₃. Atomi ugljenika karbonilnih grupa, C7" i C4, sa višim

vrednostima hemijskog pomeranja otkrivaju prisustvo delimično pozitivnog naelektrisanja na atomima ugljenika. Razlika u eksperimentalnim i teorijskim hemijskim pomeranjima C7" (164,5 i 168,7 ppm) i C4 (173,1 i 183,1 ppm) je posledica prisustva atoma kiseonika i delokalizovanih π (C3–C4) elektrona, koji mogu učestvovati u formiranju slabih interakcija. Rezonancioni maksimumi sa najvećim hemijskim pomeranjima (179,4 i 183,8 ppm) primećeni su za C1' atom ugljenika iz egzociklične dvostruke veze i *pseudo*–šestočlanog prstena.

I u slučaju ¹³C NMR spektara sva tri teorijska modela pokazuju odličnu reprodukciju eksperimentalnih podataka. Ipak, B3LYP–D3BJ i APFD jako slično simuliraju NMR spektre ispitivanog jedinjenja, tako da je adekvatno koristiti bilo koji od ova dva teorijska modela u simuliranju NMR spektara ostalih **CBH1–CBH9**.

3.2.2. Analiza vibracionih (IR) spektara CBH9

Tabela P3 sadrži eksperimentalne vrednosti kao i izračunate neskalirane i skalirane vrednosti talasnog broja, kao i doprinose (PED,%) pojedinačnih vibracija talasnim brojevima. Koeficijent korelacije R=0,998 podržava tvrdnju da primenjeni teorijski model B3LYP–D3BJ/6–311++G(d,p) precizno opisuje eksperimentalne vrednosti dobijene savremenim spektroskopskim metodama [145–149]. Za prikaz IR spektara korišćen je faktor skaliranja koji iznosi 0,967, a koji je izračunat korišćenjem korelacije sa eksperimentalnim vrednostima (metodom najmanjih kvadrata). Razlika između eksperimentalnih i simuliranih vrednosti je posledica eksperimentalnih uslova merenja (priprema KBr pastile), kao i stabilizacije kristalnog pakovanja intramolekularnim vezama, što nije uzeto u obzir u simuliranim spektrima. Na slici 3.5. prikazani su eksperimentalni (crvena linija) i simulirani IR spektri dobijeni korišćenjem tri različite teorijske metode: B3LYP–D3BJ (crna linija), M062X (plava linija) i APFD (žuta linija).

Slika 3.5. Eksperimentalni (crvena linija) i simulirani IR spektri (B3LYP–D3BJ (crna linija), M06–2X (plava linija) i APF–D (žuta linija))

U prikazanom IR spektru, pozicije traka se mogu podeliti u tri regiona. Trake sa najvećim talasnim brojevima uključene su u prvi region. Vibracija N2–H istezanja (v_{N2-H}=99%) uzrokuje veoma intenzivan široku traku na 3440 cm⁻¹ u eksperimentalnom spektru i 3494 cm⁻¹ u simuliranom spektru. Razlika u vrednostima od oko 50 cm⁻¹ posledica je eksperimentalnih uslova. Takođe, vodonična veza N2–H.....O7, koja doprinosi stabilizaciji kristalnog pakovanja, odgovorna je za pomeranje N2–H vibracije na nešto niže vrednosti talasnog broja u poređenju sa simuliranim vrednostima izolovanog molekula. Traka koja potiče od aromatičnih C–H istežućih vibracije javljaju u simuliranom spektru u području od 3008 cm⁻¹, dok se ove vibracije javljaju u simuliranom spektru u području od 3069–3123 cm⁻¹ (v_{C-H}=98%). Vibracije istezanja C–H metil i metoksi grupa nalaze se na 2973 cm⁻¹, dok se simulirane trake nalaze u opsegu 2990–3061 cm⁻¹ (v_{C-H}=98%). Istežuća vibracija N1–H ima niži talasni broj (2926 cm⁻¹) od istežuće vibracije N2–H zbog stabilizacije snažnom intramolekulskom interakcijom u *pseudo*–šestočlanom prstenu.

Sledi oblast C-C, C-O istežućih i C-C-H savijajućih vibracija. Vrednosti talasnih brojeva C=O istežućih vibracija smanjuju se sledećim redosledom: C2=O (1713 cm⁻¹) C7=O (1694 cm⁻¹) C4 = O (1609 cm⁻¹). Skalirane teorijske vrednosti, C2=O (1717 cm⁻¹) C7"=O (1698 cm⁻¹) C4=O (1600 cm⁻¹) dobro reprodukuju eksperimentalne vrednosti. Istežuća vibracija C2=O ima najveću vrednost talasnog broja, jer je slobodna i neometana intramolekuskim interakcijama. C7"=O vibrira na nešto nižim vrednostima zbog intramolekulske stabilizacije sa N2-H grupom u kristalnom pakovanju. Konačno, utvrđeno je da je intenzitet vibracije C4=O smanjen i a položaj trake pomeren na niži talasni broj zbog stabilizacije u pseudo-šestočlanom prstenu. Vibracije između 1586–1333 cm⁻¹ u eksperimentalnom spektru i 1575–1359 cm⁻¹ u simuliranom spektru su prvenstveno uzrokovane savijajućim C-C-H vibracijama, uz 50% doprinosa prema PED analizi. S druge strane, istežuće C-O i savijajuće O-C-H vibracije se pojavljuju na 1236 i 1128 cm⁻¹ u eksperimentalnim spektrima, dok se simulirani spektri nalaze u opsegu 1234–1119 cm⁻¹. Treći region se prvenstveno sastoji od C-C-C-H, O-C-C-C, H-C-C-H, H-C-C-O i H-C-C-H torzionih modova, koji se nalaze na 966, 763 i 670 cm⁻¹ u eksperimentalnom spektru i između 1092–677 cm⁻¹ u simuliranom spektru, i čiji doprinos prema PED analizi iznosi 40%.

3.2.2. Analiza UV–Vis spektralnih podataka za CBH9

Eksperimentalni UV–Vis spektar **CBH9** je snimljen u metanolu. Slika 3.6. prikazuje eksperimentalne i simulirane UV–Vis spektre ispitivanog molekula. Tabela 3.4. prikazuje kvantitativne eksperimentalne i teorijske vrednosti, za talasnu dužinu apsorpcionih maksimuma (λ) i jačinu oscilatora (f). Na slici 3.7. prikazane su molekulske orbitale uključene u glavne elektronske prelaze.

Slika 3.6. Eksperimentalni (crvena linija) i simulirani UV–Vis spektri (B3LYP–D3BJ (crna linija), M06–2X (plava linija) i APF–D (žuta linija)); na levoj strani grafika prikazane su vrednosti apsorbance dok se na desnoj strani očitavaju oscilatorne jačine; *označava maksimume oscilatorne jačine

Eksperimentalni spektar u rastvoru metanola pokazuje širokopojasnu traku sa maksimumom apsorpcije od 333 nm. Širokopojasna apsorpcija koja se sastoji od tri elektronska prelaza primećena je u spektrima simuliranim pomoću TD–DFT/B3LYP– D3BJ i APFD funkcionala (Tabela 3.5.). Oba funkcionala precizno opisuju apsorpcioni spektar ispitivanog jedinjenja. Spektar simuliran pomoću TD–DFT/M062X, sa druge strane, pokazuje elektronski prelaz na 216 nm sa izraženom trakom, kao i širokopojasnu traku koja proizilazi iz dva prelaza na 281 i 293 nm. Može se zaključiti da M062X ne simulira adekvatno eksperimentalni apsorpcioni spektar.

Eksperimentalne vrednosti	TD-B3LYP-D3BJ/6-311++G(d,p)					
λ (nm) CBH9	λ (nm)	f	Elektronski prelazi			
	326	0,195	HOMO→LUMO (56%)			
	295	0,419	HOMO–3→LUMO (57%)			
	276	0,187	HOMO→LUMO+1 (59%)			
		M06-2X/6-311++G(d,p)				
	293	0,200	HOMO–5→LUMO (50%)			
333	281	0,586	HOMO–2→LUMO (51%)			
	216	0,275	HOMO–2→LUMO+3 (38%)			
	APF-D/6-311++G(d,p)					
	319	0,302	HOMO→LUMO (41%)			
	289	0,319	HOMO–3→LUMO (57%)			
	268	0,203	HOMO→LUMO+1 (60%)			

Tabela 3.5. Eksperimentalne i teorijske vrednosti talasnih dužina λ (nm), oscilatorne jačine(f) i elektronski prelazi za CBH9

Slika 3.7. prikazuje molekulske orbitale sa elektronskim prelazima dobijenim korišćenjem B3LYP–D3BJ funkcionala.

Slika 3.7. Elektronski prelazi i HOMO LUMO uključene u pomenute prelaze

HOMO–LUMO (58%) prelaz sa energetskom separacijom od 4,24 eV uzrokuje elektronski prelaz na 326 nm sa oscilatornom snagom 0,195. Pojava maksimuma na 295 nm (57%) i energetskom separacijom od 4,74 eV je posledica elektronskog prelaza sa HOMO–3 na LUMO. Prelaz od 276 nm je uzrokovan prelazom HOMO–LUMO+1 (59%) sa oscilatornom jačinom od 0,187. U zaključku, gore pomenuti elektronski prelazi se superponiraju i formiraju intenzivnu široku traku čiji maksimum dobro reprodukuje eksperimentalne vrednosti (Slika 3.6., crna linija) koji dobro korelira sa eksperimentalnim vrednostima. Razlika između eksperimentalnih i teoretskih vrednosti je posledica korišćenja implicitnog solvatacionog modela što dovodi do zanemarivanja specifičnih interakcija između molekula rastvarača i rastvorene supstance, važnih za ovaj vid simulacija.

3.3. Ispitivanje strukturnih parametara CBH1–CBH8

Kako je u prethodnim poglavljima detaljno ispitana struktura jedinjenja **CBH9**, za koje je dobijena kristalna struktura, i određen najbolji teorijski model za opisivanje strukture novosintetisanih benzohidrazidskih derivata 4–hidroksikumarina, B3LYP–D3BJ, korišćenjem ovog funkcionala u daljem tekstu predstavljene su strukturne karakteristike preostalih osam jedinjenja sintetisanih u okviru ovog doktorata. Takođe, koristeći isti teorijski model simulirani su spektri dobijenih jedinjenja i upoređivanjem ovih podataka nedvosmisleno su potvrđene pretpostavljene strukture **CBH1–CBH8**.

3.3.1. Analiza i opis strukturnih parametara CBH1–CBH8

Uprkos brojnim pokušajima prekristalizacije pomoću različitih tehnika i rastvarača kao i njihovih smeša u različitim odnosima, monokristal pogodan za rendgensku strukturnu analizu nije dobijen. Iz tog razloga, pored standardnih spektroskopskih metoda, dobijena jedinjenja ispitana su DFT metodama u cilju definisanja važnih geometrijskih parametara. Ovi parametri predstavljeni u ovom poglavlju dobijeni su iz odgovarajuće ravnotežne geometrije u gasu, primenom već dokazano pouzdanog teorijskog modela B3LYP–D3BJ/6–311++G(d,p). Optimizovane strukture novosintetisanih benzohidrazidskih derivata, **CBH1–CBH8**, predstavljene su na slici 3.8., dok su numerički parametri koji opisuju strukture ovih jedinjenja dati u tabelama 3.6.–3.7 (dužine veza), P4 (uglovi veza), P5 (diedarski/torzioni uglovi).

CBH	CBH1		CBH2		CBH3		4
Dužina ve	eze (Å)	Dužina v	eze (Å)	Dužina ve	ze (Å)	Dužina veze (Å)	
O1–C2	1,391	O1–C2	1,390	O1–C2	1,392	O1–C2	1,392
C2–C3	1,462	C2–C3	1,462	C2–C3	1,461	C2–C3	1,460
C3–C4	1,452	C3–C4	1,454	C3–C4	1,453	C3–C4	1,452
C4–C10	1,468	C4–C10	1,468	C4–C10	1,468	C4–C10	1,468
C10-C5	1,402	C10-C5	1,403	C10–C5	1,402	C10-C5	1,402
C5–C6	1,384	C5–C6	1,384	C5–C6	1,384	C5–C6	1,384
C6-C7	1,401	C6-C7	1,401	C6–C7	1,401	C6-C7	1,401
C7–C8	1,387	C7–C8	1,387	C7–C8	1,387	C7–C8	1,387
C8–C9	1,395	C8–C9	1,395	C8–C9	1,395	C8–C9	1,395
C9-C10	1,394	C9–C10	1,394	C9–C10	1,394	C9–C10	1,394
C901	1,363	C9–O1	1,363	C9–O1	1,362	C9–O1	1,362
C3–C1'	1,415	C3–C1'	1,415	C3–C1'	1,418	C3–C1'	1,419
C1'- C2'	1,494	C1'- C2'	1,494	C1'- C2'	1,494	C1'- C2'	1,494
C1'- N1	1,342	C1'- N1	1,340	C1'- N1	1,337	C1'- N1	1,337
N1-N2	1,378	N1-N2	1,382	N1-N2	1,383	N1-N2	1,382
N2-C7"	1,384	N2-C7"	1,383	N2-C7"	1,397	N2-C7"	1,396
C7"-C1"	1,495	C7"- C1"	1,474	C7"- C1"	1,487	C7"-C1"	1,487
C1"- C2"	1,398	C1"– C2"	1,418	C1"– C2"	1,398	C1"– C2"	1,404
C2"– C3"	1,389	C2"– C3"	1,402	C2"– C3"	1,386	C2"–C3"	1,382
C3"- C4"	1,395	C3"- C4"	1,382	C3''- C4''	1,398	C3''- C4''	1,410
C4"- C5"	1,393	C4"- C5"	1,401	C4"- C5"	1,397	C4"-C5"	1,388
C5"- C6"	1,392	C5"– C6"	1,382	C5"- C6"	1,387	C5"-C6"	1,392
C6"-C1"	1,399	C6"– C1"	1,407	C6"- C1"	1,401	C6"-C1"	1,396
C2 – O2	1,207	C2 – O2	1,207	C2 – O2	1,207	C2 – O2	1,207
C4 – O4	1,248	C4 – O4	1,249	C4 – O4	1,250	C4 – O4	1,230
C7"- O7"	1,214	C7''- O7''	1,232	C7''- O7''	1,214	C7''- O7''	1,215
		C2''- O2''	1,339	C4"- O4"	1,360	C3"– O3"	1,367
						O3"– C8"	1,426
						C4"- O4"	1,354

Slika 3.8. Optimizovane geometrije CBH1–CBH8

Da bi se lakše predstavili dobijeni rezultati dužine veza, jedinjenja su podeljena u dve grupe. Prvu grupu predstavljaju kumarin-benzohidrazidski derivati koji na benzohidrazidskom delu sadrže najviše jednu hidroksilnu grupu **CBH1-CBH4**. Dakle, jedinjenja **CBH1-CBH4** dobijena su iz benzohidrazida koji su derivati benzoeve (**CBH1**), salicilne (**CBH2**), *p*–hidroksibenzoeve (**CBH3**) i vanilinske kiseline (**CBH4**).

Drugu grupu čine jedinjenja koja sadrže više hidroksilnih grupa vezanih za benzohidrazidski deo. Naime, jedinjenja sa kateholskim fragmentom **CBH5** i **CBH6** dobijena su iz benzohidrazida pirokatehinske i protokatehinske kiseline, dok su **CBH7** i **CBH8**, proizvodi sa pirogalolskom jedinicom, dobijeni iz benzohidrazidnih derivata pirogalolkarboksilne kiseline i galne kiseline.

Kao što se može primetiti iz tabela 3.6. i 3.7., ali i tabela P4 i P5, najveće strukturne razlike između ovih jedinjenja javljaju se na benzohidrazidskom delu molekula, kao i na hidrazidnom mostu između kumarinskog i benzohidrazidskog dela molekula. Jedna od najinteresantnijih varijacija jeste promena dužine **C7"– O7"** veze, koja se produžava sa prisustvom supstituenta u *orto* položaju, potvrđujući još jednom prisustvo *pseudo*–šestočlanog prstena formiranjem vodonične veze između protona hidroksilne grupe u položaju C2" i kiseonika karbonilne grupe u položaju C7". Ovako formirana vodonična veza omogućuje poboljšanu delokalizaciju elektronskog oblaka preko celog molekula, posebno kod radikalske i anjonske vrste, što je od posebnog značaja za antioksidativni potencijal ovih jedinjenja, o čemu će biti reči u narednim poglavljima.

CBH	CBH5		CBH6		CBH7		8
Dužina ve	eze (Å)	Dužina v	eze (Å)	Dužina ve	Dužina veze (Å) Dužir		eze (Å)
O1-C2	1,390	O1-C2	1,391	O1-C2	1,390	O1–C2	1,392
C2–C3	1,462	C2–C3	1,460	C2–C3	1,462	C2–C3	1,461
C3–C4	1,454	C3–C4	1,452	C3–C4	1,454	C3–C4	1,452
C4-C10	1,467	C4-C10	1,468	C4-C10	1,468	C4-C10	1,468
C10-C5	1,403	C10-C5	1,402	C10–C5	1,403	C10-C5	1,402
C5-C6	1,384	C5–C6	1,384	C5–C6	1,384	C5–C6	1,384
C6-C7	1,401	C6-C7	1,401	C6-C7	1,401	C6-C7	1,401
C7–C8	1,387	C7–C8	1,387	C7–C8	1,387	C7–C8	1,387
C8–C9	1,395	C8–C9	1,395	C8–C9	1,395	C8–C9	1,395
C9-C10	1,394	C9-C10	1,394	C9–C10	1,394	C9-C10	1,394
C901	1,363	C901	1,362	C9–O1	1,363	C901	1,362
C3–C1'	1,415	C3–C1'	1,418	C3–C1'	1,415	C3–C1'	1,418
C1'– C2'	1,494	C1'- C2'	1,494	C1'- C2'	1,494	C1'- C2'	1,494
C1'- N1	1,337	C1'- N1	1,337	C1'- N1	1,337	C1'- N1	1,337
N1-N2	1,381	N1-N2	1,382	N1-N2	1,381	N1-N2	1,382
N2-C7"	1,378	N2–C7''	1,395	N2-C7"	1,381	N2–C7''	1,393
C7"-C1"	1,475	C7"- C1"	1,487	C7"- C1"	1,467	C7"-C1"	1,490
C1"- C2"	1,407	C1"– C2"	1,407	C1"- C2"	1,413	C1"- C2"	1,399
C2"- C3"	1,408	C2''- C3''	1,381	C2"-C3"	1,394	C2''- C3''	1,385
C3"-C4"	1,383	C3''- C4''	1,405	C3"- C4"	1,391	C3"-C4"	1,395
C4"– C5"	1,399	C4"- C5"	1,390	C4"- C5"	1,400	C4"- C5"	1,396
C5"-C6"	1,383	C5"– C6"	1,391	C5"- C6"	1,381	C5"– C6"	1,390
C6"- C1"	1,410	C6"– C1"	1,398	C6"- C1"	1,409	C6"– C1"	1,398
C2 – O2	1,207	C2 – O2	1,207	C2 – O2	1,207	C2 – O2	1,207
C4 – O4	1,249	C4 – O4	1,250	C4 – O4	1,249	C4 – O4	1,250
C7''- O7''	1,233	C7''- O7''	1,215	C7''- O7''	1,235	C7''- O7''	1,215
C2''- O2''	1,349	C3''- O3''	1,373	C2"- O2"	1,348	C3''- O3''	1,372
C3''- O3''	1,357	C4"- O4"	1,354	C3"– O3"	1,367	C4"- O4"	1,364
				C4"- O4"	1,353	C5''- O5''	1,359

Tabela 3.7. Dužina veza CBH5–CBH8 dobijene pomoću B3LYP–D3BJ/6–311++G(d,p)

3.4. Analiza spektralnih osobina CBH1–CBH8

3.4.1. Analiza NMR spektralnih podataka CBH1–CBH8

Kako ne postoje značajne razlike između NMR spektara dobijenih B3LYP–D3BJ i APFD modela, a kako su geometrijski parametri pokazali bolje slaganje sa eksperimentalnim podacima kada je optimizacija strukture urađena pomoću B3LYP–D3BJ modela, simulacije spektara **CBH1–CBH8** urađena je pomoću GIAO metodologije korišćenjem B3LYP–D3BJ funkcionala u kombinaciji sa 6–311++G(d,p) bazisnim skupom. Hemijska pomeranja izračunata koristeći TMS kao interni standard. U tabelama 3.8. i 3.9. predstavljeni su ¹HNMR spektralni podaci dobijeni eksperimentalnim putem i pomoću B3LYP–D3BJ/6–311++G(d,p).
r													
CI	BH1			CBH2			CBH3		(CBH4			
¹ H NMR	t , δ (ppm	l)	¹ H NN	/IR , δ (pp	om)	¹ H NM	4R , δ (pj	pm)	¹ H NM	lR , δ (pp	m)		
Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	Atom	Eksp.	Teor.		
N1–H	15,73	13,74	N1–H	15,72	13,90	N1–H	13,90	15,72	N1–H	15,67	13,85		
N2–H	/	/	N2–H	/	/	N2–H	/	/	N2–H	11,55	/		
С2"-Н, С4"- Н, С6"-Н	7,98	8,10	C2"O- H	/	/	С4"О-Н	/	/	С4"О-Н	9,96	/		
С5–Н, С6– Н, С7–Н, С8–Н	7,61	7,84	С5-Н	7,99	8,41	С5-Н	8,41	7,99	С5-Н	8,00	8,45		
C3" –H, C5" –H	7,31	7,85	С2"-Н, С6"-Н	7,86	8,06	С2"-Н, С6"-Н	8,06	7,86	С7–Н	7,67	7,96		
C2'-H(3)	2,74	2,68	С6–Н, С7–Н	7,68	7,69	С6–Н, С7–Н	7,69	7,68	С2"–Н, С6"–Н	7,49	7,56		
			С8–Н	7,27	7,43	С8-Н	7,43	7,27	С6–Н, С8–Н	7,32	7,51		
			С3"–Н, С5"–Н	6,90	7,17	С3"–Н, С5"–Н	7,17	6,90	С5"-Н	6,80	7,21		
			C2'- H(3)	2,74	2,68	C2'-H(3)	2,68	2,74	C8"-H(3)	3,86	4,06		
									C2'-H(3)	2,73	2,73		
R/MAE	0,997	/0,24	R/MAE	0,998	/0,17	R/MAE	0,998	8/0,19	R/MAE	0,998	/0,23		

Tabela 3.8. Eksperimentalne i teorijske vrednosti hemijskih pomeranja (δ) za **CBH1–CBH4** u ¹HNMR spektrima

Tabela 3.9. Eksperimentalne i teorijske vrednosti hemijskih pomeranja za **CBH5–CBH8** u ¹HNMR spektrima

(CBH5			CBH6		<u> </u>	CBH7		CBH8			
¹ H NM	IR , δ (pp	m)	¹ H N	MR , δ (p	pm)	¹ H NN	/R , δ (pp	vm)	¹ H NN	/IR , δ (pp	vm)	
Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	
N1–H	15,88	13,44	N1–H	15,71	14,02	N1-H	15,83	15,05	N1–H	15,72	15,04	
N2–H	/	/	N2–H	11,51	/	С2"О–Н, N2–Н	11,38	/	N2–H	11,47	/	
С2"О-Н	/	/	C4"O- H	9,86	/	С3"О–Н	9,97	/	С4"О-Н	9,46	/	
С3"О-Н	/	/	C3"O- H	9,45	/	С4"О-Н	8,8	/	С3"О–Н, С5"О–Н	9,35	/	
С5–Н, С6– Н, С7–Н	8,00	8,02	С5–Н	7,99	8,41	С5-Н	8,00	8,49	С5-Н	7,99	8,52	
С4"-Н	7,67	7,47	С7–Н,	7,66	7,88	С7–Н,	7,67	7,96	С7–Н,	7,66	7,92	
С8–Н,	7,34	7,43	С6–Н, С8–Н, С2"–Н С3"–Н	7,29	7,49	С6–Н, С8–Н, С2"–Н	7,30	7,52	С6–Н, С8–Н	7,30	7,52	
С6"-Н	7,02	7,19	С6"-Н	6,87	7,29	С6"-Н	6,46	6,73	С2"–Н, С6"–Н	6,95	7,19	
С5"-Н	6,80	7,13	C2'- H(3)	2,73	2,65	C2'-H(3)	2,72	2,70	C2'-H(3)	2,73	2,72	
C2'-H(3)	2,73	2,66										
R/MAE	0,996	6/0,15	R/MAE	0,999	0/0,24	R/MAE	0,999	0/0,19	R/MAE 0,999/0,20			

Kao što se može videti iz tabela 3.8. i 3.9., i eksperimentalnih spektara prikazanih na slikama u prilogu, kao i u slučaju **CBH9**, hemijska pomeranja protona ispitivanih jedinjenja moguće je podeliti u tri grupe. U prvu grupu spadaju protoni polarnih funkcionalnih grupa, kao što su hidroksilna i amino grupa. Hemijska pomeranja ovih protona nalaze se u opsegu između 9,00 ppm i 15,88 ppm. U nekim slučajevima, pošto su ovi protoni izraženo visoke kiselosti, oni se lako izmenjuju molekulima rastvarača, stvarajući pritom široke i manje intenzivne pikove, a nekada se usled ovog efekta ne mogu videti na spektrima. Protoni koji se nalaze na položaju N1–H imaju izuzetno visoka hemijska pomeranja koja se kreću između 15–16 ppm. Takođe, u slučajevima kada imamo hidroksilnu grupu vezanu u položaju C2", njeno hemijsko pomeranje značajno raste. To je posledica jakih vodoničnih veza, koje "ogoljavaju" jezgro, o čemu je već bilo reči u poglavlju o ¹H NMR spektrima **CBH9**. Drugu grupu čine protoni u opsegu između 6,00–9,00 ppm i oni predstavljaju protone u aromatičnim prstenovima jedinjenja, dok u treću grupu spadaju protoni metil (na oko 2,73 ppm) i metoksi grupa (3,86 ppm),

	CBH1			CBH2		(CBH3			CBH4	
¹³ C N	MR, δ (pj	pm)	¹³ C N	IMR, δ (p	pm)	¹³ C NN	/R, δ (pj	pm)	¹³ C N	MR, δ (p	pm)
Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	Atom	Eksp.	Teor.
C1'	179,3	183,4	C1'	178,8	182,1	C1'	179,3	181,1	C1'	179,3	180,4
C4	172,4	180,9	C4	170,5	181,0	C4	171,8	180,9	C4	175,9	180,4
C7"	164,9	165,5	C7"	164,3	168,0	C7"	164,6	165,7	C7"	164,6	165,4
C1	153,2	161,1	C2"	161,5	162,9	C4"	161,6	161,8	C1	161,6	161,3
C7	134,4	155,2	C1	157,5	160,7	C1	161,5	160,7	C9	153,2	155,4
C1"	132,7	134,8	C9	153,1	154,8	C9	153,2	154,7	C4"	151,1	151,7
C4"	131,3	133,5	C6	134,3	150,5	C7	134,3	131,3	C5"	147,5	146,8
C3", C5"	128,7	131,9	C8	134,1	146,6	C2", C6"	130,1	129,6	C7	134,4	134,9
С9	128,0	129,0	C4"	129,9	136,6	C5	125,7	126,0	C5	125,8	125,7
C6, C8	125,8	127,3	C7	125,7	135,3	C6	123,9	123,1	C6	123,9	123,3
C2", C6"	123,9	126,0	C6"	123,9	126,2	C1"	121,6	122,7	C2"	122,0	118,4
C10	119,7	119,6	C5	119,6	125,9	C10	119,8	119,7	C1"	121,8	122,9
C5	116,4	119,6	C10	119,5	119,5	C8	116,4	115,5	C10	119,8	119,4
C3	95,5	96 <i>,</i> 5	C5"	117,0	118,4	C3", C5"	115,4	113,7	C8	116,4	115,8
C2′	17,7	15,5	C3"	116,4	117,5	C3	95,5	96,5	C3"	115,3	112,2
			C1"	116,3	110,4	C2′	17,7	14,7	C6"	111,9	107,3
			C3	95,5	96,8				C3	95,0	94,6
			C2′	17,7	14,5				C8"	55,9	51,2
									C2′	17.9	14.8
R/MAE	0,992	2/4,06	R/MAE	0,991	/5,13	R/MAE	0,998	3/1,58	R/MAE	0,999	/1,73

Tabela 3.10. Eksperimentalne i teorijske vrednosti hemijskih pomeranja za **CBH1–CBH4** u ¹³CNMR spektrima

	CBH5 CBH						CBH7			CBH8	
¹³ C N	JMR, δ (p	opm)	¹³ C N	MR, δ (p	pm)	¹³ C NI	MR, δ (p	pm)	¹³ C N	MR, δ (pj	pm)
Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	Atom	Eksp.	Teor.	Atom	Eksp.	Teor.
C1'	178,9	183,3	C1'	179,4	181,0	C1'	178,9	185,1	C1'	179,4	183,4
C4	171,0	181,1	C4	171,6	180,8	C4	171,0	182,7	C4	171,4	182,1
C7"	165,5	166,2	C7"	164,7	165,7	C7"	166,4	168,7	C7''	165,0	165,6
C1	161,5	161,2	C1	161,6	160,7	C1	161,5	161,4	C1	161,6	161,6
C9	153,2	155,6	С9	153,2	154,5	С9	153,1	156,7	С9	153,2	156,3
C2"	147,2	149,1	C4"	150,1	149,3	C2''	150,9	150,6	C4",C5" C3"	145,8	142,0
C3"	146,2	147,4	C5"	145,3	142,2	C4"	149,5	150,4	C7	138,1	135,5
C7	134,3	135,2	C7	134,3	134,9	C7	134,3	135,9	C1''	134,4	123,0
C5	125,7	126,3	C5	125,7	126,4	C3"	125,7	131,6	C5	125,8	127,1
C6	124,0	123,2	C6	123,9	123,1	C5	123,9	126,3	C6	124,0	123,2
C10	119,6	119,5	C2"	121,9	122,9	C6	119,7	123,2	C10	120,8	119,7
C4"	119,4	118,4	C1''	120,3	122,6	C10	119,6	120,0	C8	119,9	116,3
C5"	119,1	118,8	C10	119,8	119,7	C8	116,4	115,9	C6"	116,4	105,1
C8, C6"	116,4	115,2	C8, C3"	116,4	114,8	C6", C5"	107,7	111,8	C2''	107,5	104,7
C1"	116,2	109,1	C6"	115,4	109,3	C1''	106,5	102,1	C3	95,2	97,4
C3	95,5	96,2	C3	95,3	96,7	C3	95,4	98,4	C2'	17,8	13,9
C2′	17,6	15,1	C2′	17,8	14,7	C2'	17,6	14,1			
R/MAE	0,997/2,11 R/MAE 0,997/2,09		7/2,09	R/MAE	0,997	7/3,20	R/MAE	R/MAE 0,992/3,91			

Tabela 3.11. Eksperimentalne i teorijske vrednosti hemijskih pomeranja za **CBH5–CBH8** u ¹³CNMR spektrima

Kao što se može videti iz priloženih spektara, metoda B3LYP-D3BJ u kombinaciji sa 6-311++G(d,p) daje odlične rezultate kad je u pitanju simulacija spektara benzohidrazidskih derivata 4-hidroksikumarina. To potvrđuje i činjenica da su vrednosti koeficijenta korelacije izrazito visoke. Važno je napomenuti da usled korišćenja implicitnog solvatacionog modela, uticaj stabilizacije polarnih hidroksilnih i amino grupa nije uzet u razmatranje na adekvatan način, pa su hemijska pomeranja ovih grupa nisu razmatrana kada je u pitanju koeficijent korelacije i srednja apsolutna greška. U tabelama 3.10. i 3.11. predstavljeni su ¹³CNMR spektralni podaci dobijeni eksperimentalnim putem i pomoću B3LYP-D3BJ/6-311++G(d,p) teorijskog modela. Kao što se može videti iz pomenutih tabela, 13C NMR spektara, hemijska pomeranja atoma ugljenika mogu se podeliti u dve grupe. Prva grupa uključuje sp³ hibridizovane atome ugljenika koji pripadaju metil grupama, i koji poseduju hemijska pomeranja u intervalu 10–60 ppm. Druga grupa uključuje atome ugljenika kumarinskog jezgra i fenolnog prstena. Vrednosti hemijskih pomeranja za drugu grupu atoma ugljenika pokrivaju širok opseg između 90 ppm i 190 ppm u eksperimentalnom i simuliranim spektrima. Važno je napomenuti, da iako su razlike u hemijskim pomeranjima ugljenika zbog sličnosti u strukturi ispitivanih jedinjenja male, prisustvo hidroksilnih grupa ima veliki uticaj na pomeranje ugljenikovih atoma za koji su vezane. Razlog je to što ove funkcionalne grupe svojim induktivnim efektima "ogoljavaju" atome

ugljenika, postižući efekat sličan onom koji u protonskim spektrima imaju vodonične veze.

3.4.2. Analiza vibracionih (IR) spektara CBH1–CBH8

Vibracioni spektri snimljeni su u oblasti u kojoj se vrednosti talasnog broja kreću se između 400 i 4000 cm⁻¹. Teorijski spektri su simulirani pomoću B3LYP–D3BJ funkcionala, koji se u slučaju **CBH9** pokazao kao funkcional koji odlično opisuje vibracione IR spektre novosintetisanih benzohidrazidskih derivata. Eksperimentalni vibracioni spektri upoređeni sa teorijski dobijenim podacima dati su na slikama 3.9. i 3.10.

Kao što se može videti iz priloženih slika, ne postoje izražene značajne razlike u IR spektrima, što je bilo moguće i očekivati na osnovu velike strukturne sličnosti ispitivanih jedinjenja. Veliki deo dobijenih podataka sličan je podacima dobijenim za **CBH9**.

Slika 3.9. Eksperimentalni (crna linija) i simulirani (crvena linija, B3LYP–D3BJ/6– 311++G(d,p)/gas) vibracioni spektar za **CBH1–CBH4**. Brojevi na x–osi predstavljaju talasnu dužinu (λ) izraženu u nm

311++G(d,p)) vibracioni spektar za **CBH5–CBH8**. Brojevi na x–osi predstavljaju talasnu dužinu (λ) izraženu u nm

Najveće razlike u IR spektrima moguće je primetiti kod traka koje karakterišu supstituente na aromatičnim prstenovima. Zbog toga je ove razlike najlakše uočiti kada se spektri jedinjenja CBH2-CBH8 uporede sa spektrima CBH1, jer ovo jedinjenje nema supstituente na benzenovom prstenu. Da se ne bi ponavljao opis celokupnih spektara kao što je dato za CBH9, ovde će fokus biti na upravo ovim razlikama. U prikazanim IR spektrima, pozicije traka se takođe mogu podeliti u tri regiona. Trake sa najvećim talasnim brojevima uključene su u prvi region i zbog prirode supstituenata tu se javljaju najveće razlike. Vibracije N2-H istezanja uzrokuju intenzivnu, široku traku na 3450 cm⁻¹ u eksperimentalnim spektrima i na nešto višim vrednostima u simuliranim spektrima. Ove trake se preklapaju sa trakama koje se nalaze na oko 3000 cm⁻¹ u eksperimentalnim spektrima, koje opisuju vibracije OH grupa. Nivo preklapanja ovih traka zavisi od broja prisutnih hidroksilnih grupa, tako da ovih preklapanja u spektrima monohidroksilnih derivata ovih preklapanja skoro da nema, dok su kod trihidroksilnih derivata ove trake su potpuno preklopljene. Značajna razlika u teorijskim spektrima u ovom regionu potiče od pozicije samih hidroksilnih grupa. Naime, kada se neka od hidroksilnih grupa nalazi u orto položaju i učestvuje u formiranju pseudo-šestočlanog prstena, talasni broj na kom se uočava njena vibracija se usled formiranja vodonične veze znatno smanjuje, pa kod jedinjenja CBH5 i CBH7 primećujemo intenzivnu traku na oko 3000 cm⁻¹, koja potiče od vibracije O2"-H veze. Takođe, utvrđeno je da je vibracija C4=O jedinjenja koja formiraju vodoničnu vezu O2"-H----O7" oslabljena i pomerena na niži talasni broj usled formiranja pseudo-šestočlanog prstena.

3.4.3. UV–Vis spektri i globalni parametri reaktivnosti CBH1–CBH8

Kao što je i očekivano, usled sličnosti u strukturama i sličnih hromofora koje karakterišu **CBH1–CBH8**, mogu se primetiti i velike sličnosti u UV–Vis spektrima ispitivanih jedinjenja. Naime, kao i kod **CBH9**, eksperimentalni spektri u metanolnom rastvoru pokazuju traku sa maksimumom apsorpcije na talasnoj dužini oko 330 nm. Širokopojasna apsorpcija koja se sastoji od tri elektronska prelaza primećena je u spektrima simuliranim pomoću TD–DFT/B3LYP–D3BJ, sa tim da je najintenzivniji maksimum izazvan upravo elektronskim prelazom iz HOMO u LUMO. To indicira da je parametar koji predviđa reaktivnost, poznatiji kao HOMO–LUMO separacija (HOMO–LUMO gap — H–L) relativno nizak, što čini ova jedinjenja potencijalno dobrim antioksidantima. Ovaj parametar, H–L, izračunat kao energetska razlika između HOMO i LUMO, važan je indeks stabilnosti i hemijske reaktivnosti.

Eksperimentalni UV-Vis spektri snimljeni u metanolu, kao i dobijeni pomoću B3LYP–D3BJ/6–311++G(d,p) dati su na slici P19 u prilogu ove disertacije. Interesantan trend može se primetiti kada se posmatra intenzitet maksimuma na talasnoj dužini oko 250 nm, u odnosu na maksimum koji se nalazi na 330 nm. Naime, intenzitet ovog maksimuma se smanjuje sa porastom broja hidroksilnih grupa, najizraženiji je kod CBH1, dok se kod CBH8, a i CBH9, ovaj maksimum skoro i ne primećuje. Bitno je naglasiti da ova pojava, iako je vizuelno izraženija u teorijskim, jasno se uočava i u eksperimentalnim spektrima. Pretpostavka je da se ova pojava može objasniti raspodelom elektronske gustine sa benzenovog prstena preko hidroksilnih grupa usled njihovog induktivnog efekta, što dovodi do "gašenja" benzenovog prstena kao farmakofore. Tu tvrdnju delimično potvrđuje i činjenica da položaj hidroksilnih grupa utiče na intenzitet maksimuma na 250 nm, odnosno kod jedinjenja kod kojih je OH grupa stabilizovana vodoničnom vezom CBH2, CBH5 i CBH7, ovaj maksimum je intenzivniji nego kod njihovih izomera. Ova pojava se na neki način može dovesti i u korelaciju sa stabilnošću HOMO i H-L. Naime, što je H-L veći, to je preklapanje između graničnih orbitala manje, što čini jedinjenje manje reaktivnim. Takođe, to znači da će i razlika ova dva maksimuma biti izraženija. Manji H-L indicira veću reaktivnost, bolju sposobnost stabilizacije nesparenih elektrona i bolju delokalizaciju elektronskog oblaka preko cele strukture molekula [22,33]. Promena apsorpcije sa promenom delokalizacije elektronskog oblaka stoji u osnovi mnogih metoda koje koriste UV-Vis spektroskopiju i ova pojava će biti obilato korišćena u istraživanjima u okviru ove disertacije.

Vrednosti H–L za ispitivana jedinjenja data su u **tabeli 3.12.** Ove vrednosti mogu dati dobru indikaciju koliko će ispitivana jedinjenja biti potentni antioksidanti, tako što će jedinjenja sa nižim vrednostima H–L biti reaktivnija prema slobodnim radikalima.

	osnovu energija HOMO i LUMO (eV)										
Metanol	HOMO	LUMO	H–L								
CBH1	-8,24	-1,38	6,85								
CBH2	-8,10	-1,41	6,68								
CBH3	-8,09	-1,36	6,74								
CBH4	-7,80	-1,35	6,45								
CBH5	-7,81	-1,42	6,39								
CBH6	-7,86	-1,36	6,50								
CBH7	-7,87	-1,40	6,47								
CBH8	-7,86	-1,37	6,49								
CBH9	-6,65	-1,38	6,56								

Tabela 3.12. H–L (eV) – parametar koji opisuje reaktivnost ispitivanih jedinjenja na osnovu energija HOMO i LUMO (eV)

Kao što se može videti iz tabele 3.12., jedinjenja koja imaju potencijala da budu dobri antioksidativni agensi su **CBH4**, **CBH5**, **CBH7** i **CBH8**, ali o tome više reči u narednim poglavljima.

3.5. *In vitro* antioksidativna aktivnost novosintetisanih benzohidrazidskih derivata 4-hidroksikumarina CBH1-CBH9

3.5.1. Ispitivanje antiradikalske aktivnosti CBH1–CBH9 – DPPH test

Sva jedinjenja sintetisana i okarakterisana u okviru prethodnih poglavlja ove disertacije podvrgnuta su *in vitro* ispitivanjima antioksidativnog delovanja pomoću različitih eksperimentalnih metoda. Prva i jedna od najznačajnih i opšte prihvaćenih metoda jeste DPPH test. Hemijska vrsta poznata pod nazivom 2,2–difenil–1– pikrilhidrazil radikal (DPPH•) predstavlja stabilnu slobodno–radikalsku česticu sa neuobičajeno dugim periodom poluživota, u poređenju sa drugim radikalskim vrstama. Stabilnost DPPH• leži u njegovoj strukturi (Slika 1.21.) koja omogućava dobru delokalizaciju nesparenog elektrona. Zbog relativno visoke stabilnosti, ovaj radikal je često primenjivan kao model sistem u testovima antiradikalske aktivnosti različitih jedinjenja. U okviru ove disertacije, antiradikalski kapacitet svih novosintetisanih derivata **CBH1–CBH9** ispitivan je DPPH metodom. Dobijeni rezultati su predstavljeni u tabeli 3.13.

	(%) pri razlicitim koncentracijama i vremenskim intervalima												
	Inaktivacij	a DPPH rad	ikala (%)				_						
Jedinjenje	25	μΜ	50	μΜ	100	μΜ	IC50 (µM)	SF					
	20 min	60 min	20 min	60 min	20 min	60 min	-						
CBH1	$4,7 \pm 1,2$	$5,6 \pm 0,9$	$6,4 \pm 0,9$	$7,0 \pm 2,1$	8,3 ± 1,5	8,7 ± 1,3	_	_					
CBH2	$0,6 \pm 0,8$	$1,2 \pm 0,7$	$1,9 \pm 0,4$	$2,3 \pm 1,6$	$2,9 \pm 0,7$	$8,7\pm0,7$	_	_					
CBH3	$0,1 \pm 1,0$	$4,7 \pm 1,7$	$2,2 \pm 0,8$	$10,9 \pm 1,7$	$4,5 \pm 1,8$	$15,8\pm0,2$	_	_					
CBH4	$20,4 \pm 1,2$	$26,7\pm0,9$	$26,1\pm0,5$	$33,5\pm0,2$	$31,5\pm0,4$	$41,5\pm0,6$	$142,2 \pm 2,7$	_					
CBH5	$92,9\pm0,1$	$92,5\pm0,4$	$92,4 \pm 0,3$	$93,3 \pm 0,3$	$94,9\pm0,6$	$94,3\pm0,9$	$2,9 \pm 0,1$	4,4					
CBH6	$63,1 \pm 1,1$	$73,6 \pm 0,9$	$63,2 \pm 1,6$	$75,1 \pm 0,7$	$66,2 \pm 1,8$	$75,3\pm0,4$	$12,9 \pm 0,6$	1,0					
CBH7	$92,1\pm0,8$	$93,7 \pm 3,0$	$94,7\pm0,4$	$94,2\pm0,4$	$95,2 \pm 0,9$	$96,4\pm0,8$	$6,8 \pm 0,2$	1,8					
CBH8	$94,0\pm02$	93,6 ± 1,2	$94,9\pm0,3$	$95,7\pm0,5$	$98,7 \pm 1,5$	$97,3 \pm 3,1$	$2,6 \pm 0,1$	4,7					
CBH9	$7,8 \pm 0,5$	$8,0\pm0,4$	$9,8 \pm 0,3$	$10,8\pm2,0$	$21,5\pm0,8$	$25,4 \pm 2,9$	-	_					
NDGA	$94,6 \pm 0,7$	$94,6\pm0,6$	$94,2\pm0,7$	$94,2\pm0,7$	$94,5\pm0,2$	$94,1\pm0,7$	$1,7 \pm 0,1$	7,4					
Kvercetin	$95,3 \pm 0,8$	$95,1 \pm 0,9$	$96,8 \pm 1,0$	$96,5 \pm 0,9$	$95,1 \pm 0,9$	$95,4\pm0,8$	$1,9 \pm 0,1$	6,6					

Tabela 3.13. Antiradikalski kapacitet novosintetisanih CBH1–CBH9; Inaktivacija DPPH•(%) pri različitim koncentracijama i vremenskim intervalima

Prisustvo konjugovanih veza u strukturi DPPH[•] ne samo što omogućava dobru delokalizaciju nesparenog elektrona, već uzrokuje pojavu ljubičaste boje, sa maksimumom apsorpcije na 517 nm. Kada DPPH[•] primi vodonikov atom (ili elektron) od molekula potencijalnog antioksidanta, on se redukuje u hidrazin žute boje, pri čemu se smanjuje intenzitet apsorpcije na 517 nm. Pomeranje apsorpcionog maksimuma je posledica sparivanja nesparenog elektrona. Ovako nastalo smanjenje apsorbancije proporcionalno je antioksidativnoj aktivnosti ispitivanih jedinjenja.

Kao što se može videti iz tabele 3.13. najniže IC₅₀ vrednosti pokazuje jedinjenje **CBH8** (IC₅₀ = 2,6 ± 0,1 μ M) što je i očekivano obzirom na tri –OH grupe vezane za aromatični prsten. Međutim, aktivnost ovog jedinjenja nije praćena njegovim

strukturnim izomerom **CBH7**, već je **CBH5** (IC₅₀ = 2,9 ± 0,1 µM) pokazao antioksidativni potencijal sličan **CBH8**, dok je aktivnost **CBH7** nešto niža, sa IC₅₀ = 6,8 ± 0,2 µM. Ovakav trend je neočekivan obzirom da jedinjenje **CBH5** poseduje jednu – OH grupu manje od **CBH7**. Da bi se objasnio ovaj fenomen, potrebno je detaljnije ispitati strukturu i distribuciju spina i elektronske gustine, što će biti tema narednog poglavlja, u kome će se antioksidativna aktivnost ispitivati *in silico* metodama. Zanimljivo je naglasiti da jedinjenje **CBH6** ima višestruko niži antiradikalski potencijal, iako predstavlja strukturni analog **CBH5**. Takođe, važno je reći da jedinjenja **CBH5** i **CBH8** poseduju IC₅₀ vrednosti slične kvercetinu i NDGA koji se smatraju odličnim antioksidativnim agensima.

3.5.2. Ispitivanje antiradikalske aktivnosti CBH1–CBH9 – ABTS i FRAP testovi

Pored standardnog DPPH testa, postoje i druge opšteprihvaćene metode za određivanje antiradikalskog kapaciteta potencijalnih antioksidativnih agenasa. Metoda jako slična DPPH testu jeste ABTS metoda. Kao što je napomenuto u poglavlju o metodologiji, ovaj test se zasniva na reakciji između katjona ABTS radikala i antioksidanata, što rezultira redukcijom zeleno obojenog ABTS radikala u njegov bezbojni oblik. Smanjenje apsorbancije na specifičnoj talasnoj dužini usled smanjenja koncentracije ABTS radikala je direktno proporcionalno sposobnosti testiranih jedinjenja da inaktiviraju radikalske vrste. Iako DPPH test u naučnoj zajednici predstavlja zlatni standard kada govorimo o ispitivanju antioksidativnog potencijala, nije loše validirati rezultate sličnim testom kao što je ABTS. ABTS i DPPH testovi su komplementarne metode, jer se smatra da ispitivana jedinjenja u ovim testovima drugaciji mehanizam inaktivacije radikala. Naime, DPPH test se smatra metodom gde ispitivana jedinjenja uglavnom prate HAA mehanizam, dok se u ABTS testu antioksidativni potencijal jedinjenja uglavnom ispoljava preko elektron transfera. ABTS, kao i DPPH test, pruža pouzdan i brz način procene potencijala antioksidanata da neutrališu slobodne radikale i široko se koristi u istraživačkoj i farmaceutskoj industriji za procenu efikasnosti potencijalnih antioksidanta. Takođe, FRAP test je popularan i svestran metod za procenu antioksidativnog kapaciteta različitih jedinjenja u biološkim uzorcima. Slično ABTS i DPPH testovima, FRAP test meri sposobnost antioksidanata da redukuju obojeni kompleks. U ovom testu, Fe3+fericijanidni kompleks se u prisustvu antioksidanata redukuje u Fe2+-formu, što rezultira promenom apsorpcije na specifičnoj talasnoj dužini. FRAP test nudi prednosti u odnosu na ABTS i DPPH testove, jer može istovremeno da proceni redukcioni kapacitet i hidrofilnih i lipofilnih antioksidanata, pružajući sveobuhvatan pogled na ukupni antioksidativni potencijal u uzorku. Zbog svoje jednostavnosti, ponovljivosti i sposobnosti merenja širokog spektra antioksidanata, FRAP test se široko koristi u nutricionističkim i biomedicinskim istraživanjima za procenu redoks statusa i antioksidativnog kapaciteta bioloških sistema. Pored DPPH testa za koji su rezultati predstavljeni u prethodnom poglavlju, novosintetisani benzohidrazidski derivati 4-hidroksikumarina podvrgnuti su i ABTS i FRAP testu. Dobijeni rezultati predstavljeni su u sledećoj tabeli.

		AB	TS test		EDAD
Jedinjenje	Inaktiva	cija reaktivne	e vrste (%)		ГКАГ
	25 μΜ	50 µM	100 µM	IC50 (µM)	A700 nm
CBH1	$0,8 \pm 0,5$	$3,1 \pm 0,7$	$4,0\pm0,8$	_	$0,0111 \pm 0,0024$
CBH2	$1,5 \pm 0,3$	2,1 ±0,9	4,7 ±1,0	-	$0,0226 \pm 0,0041$
CBH3	$19,9 \pm 2,4$	$20,1\pm1,6$	$25,1 \pm 3,3$	-	$0,0455 \pm 0,0057$
CBH4	$73,5 \pm 3,1$	79,7 ± 5,3	$82,7 \pm 2,7$	$8,7 \pm 0,1$	$0,2452 \pm 0,0084$
CBH5	_	-	_	$4,2 \pm 0,1$	$0,4108 \pm 0,0101$
CBH6	$95,7 \pm 1,4$	$97,5\pm0,6$	$96,9 \pm 0,1$	$5,8 \pm 0,1$	$0,6603 \pm 0,0081$
CBH7	_	-	_	$5,4 \pm 0,1$	0,3864 ± 0,0136
CBH8	_	-	_	$2,2 \pm 0,1$	$0,6695 \pm 0,0269$
CBH9	$10,9 \pm 1,7$	$19,3 \pm 2,0$	$37,0 \pm 1,4$	-	$0,0335 \pm 0,0021$
Troloks	$97,4 \pm 0,2$	$99,3 \pm 0,1$	$99,5 \pm 0,3$	$5,3 \pm 0,1$	-
Vitamin C	-	-	-	_	$0,0967 \pm 0,0022$

 Tabela 3.14. Antiradikalski kapacitet novosintetisanih CBH1–CBH9; Inaktivacija ABTS⁺⁺

 (%) pri različitim koncentracijama i vremenskim intervalima. FRAP test

*Koncentracije ispitivanih jedinjenja i referentnog standarda – askorbinske kiseline u uzorku su 10 μM.

Kao što se može videti iz tabele 3.14., rezultati ABTS testa prate trend postavljen DPPH metodologijom. Veoma važno je naglasiti da prema ABTS testu, jedinjenja CBH8 i CBH5 poseduju niže IC⁵⁰ vrednosti od troloksa, jako potentnog antioksidanta. Štaviše jedinjenja CBH6 i CBH7 imaju vrednosti jako slične sa troloksom, što indicira odličan antioksidativni potencijal ovih jedinjenja. Važnu razliku u odnosu na DPPH test predstavlja jedinjenje CBH4 koje pri inaktivaciji DPPH• nije pokazalo značajan antioksidativni potencijal, dok je pri inaktivaciji ABTS++ ovo jedinjenje pokazalo 20 puta niže IC50 vrednosti. Važno je napomenuti da su jedinjenja koja su pokazala visoku aktivnost prema ABTS testu, jedinjenja koja imaju relativno nizak H-L, odnosno rezultati ABTS testa su u korelaciji sa predviđanjima na osnovu H-L. Kada govorimo o rezultatima FRAP testa, možemo primetiti da rezultati nisu izraženi u IC50 vrednostima već u vrednostima apsorbancije na 700 nm talasne dužine. Sa porastom aktivnosti ispitivanog jedinjenja, raste apsorbancije na ovoj talasnoj dužini. Praćenjem ovih vrednosti možemo da vidimo da rezultati ovog testa prate malo drugačiji trend u odnosu na prethodna dva. Naime, dva najaktivnija jedinjenja prema FRAP testu su CBH8 i CBH6 praćena jedinjenjima CBH5 i CBH7. Interesantno je da je FRAP test potvrdio rezultate ABTS testa kada je u pitanju jedinjenje CBH4, koje, iako manje reaktivno od gore pomenutih ipak pokazuje određeni stepen aktivnosti. Ipak, prema FRAP testu sva ispitivana jedinjenja su manje potentni antioksidativni agensi od vitamina C. Detaljnije ispitivanje antioksidativne aktivnosti ovih jedinjenja biće dato u narednim poglavljima, pogotovu kada se radi o mehanizmima antioksidativnog delovanja CBH1-CBH9.

3.6. *In silico* antioksidativna aktivnost novosintetisanih benzohidrazidskih derivata 4-hidroksikumarina CBH1-CBH9

In vitro testovi antioksidativne aktivnosti pokazuju, kada su u pitanju **CBH1– CBH9**, rezultate uporedive sa komercijalnim i poznatim antioksidantima. Da bi se bolje objasnila ovakva pojava, neophodno je ispitati mehanizam delovanja ovih jedinjenja. Međutim, vrednosti dobijene *in vitro* ispitivanjima ne pružaju adekvatan uvid u mehanizam antioksidativnog delovanja. Da bi se detaljnije ispitao mehanizam antioksidativnog, ali i antiradikalskog delovanja, pribegava se primeni računarskih metoda. U okviru ovog poglavlja naći će se termodinamički i kinetički parametri koji opisuju reakcije inaktivacije hidroksi, ali i drugih radikalskih vrsta, sa posebnim osvrtom na mehanizme koji dovođe do formiranja neutralnih proizvođa, odnosno stabilnih jedinjenja. Takođe, u okviru ove disertacije postuliran je i novi mehanistički put, "Sekvencionalni gubitak protona praćen transferom elektrona i kuplovanjem radikala" (*Sequential Proton Loss Electron Transfer Radical–Radical Coupling* – **SPLET– RRC**), koji se prvi put u literaturi pominje u radovima koji su vezani za rezultate ove doktorske disertacije.

Iako je u okviru prethodnih poglavlja za ispitivanje strukturnih parametara korišćen B3LYP–D3BJ teorijski model, sva termodinamička i kinetička ispitivanja u okviru ove disertacije biće urađena pomoću M062X funkcionala, koji se u prethodnim istraživanjima pokazao kao veoma dobar u ispitivanju mehanizama organskih reakcija [79–81].

3.6.1. Termodinamička ispitivanja antioksidativnog potencijala CBH1–CBH9

Da bi se pre svega ispitao antioksidativni potencijal samog jedinjenja, ne uzimajući u obzir doprinos slobodno–radikalske vrste, potrebno je razmatrati termodinamičke parametre prikazane sledećim jednačinama:

$BDE = H(Ar-O^{\bullet}) + H(H^{\bullet}) - H(Ar-OH)$	(3.1)
---	-------

 $IP = H(Ar - OH^{+}) + H(e^{-}) - H(Ar - OH)$ (3.2)

 $PDE = H(Ar - O^{*}) + H(H^{+}) - H(Ar - OH^{*+})$ (3.3) $PA = H(Ar - O^{-}) + H(H^{+}) - H(Ar - OH^{*+})$ (2.4)

$$PA = H(Ar-O') + H(H') - H(Ar-OH)$$
(3.4)
ETE = H(Ar-O') + H(e⁻) - H(Ar-O⁻) (3.5)

pri čemu **BDE** (*Bond Dissociation Enthalpy*) (3.1) predstavlja entalpiju homolitičkog raskidanja veze i opisuje HAA mehanizam, zatim jonizacioni potencijal (*Ionization Potential* – **IP**) (3.2) i entalpiju disocijacije protona (Proton Dissociation Enthalpy – **PDE**) (3.3) koji opisuju SET–PT mehanizam, i na kraju afinitet prema protonu (*Proton Affinity* – **PA**) (3.4) i entalpiju transfera elektrona (Electron Transfer Enthalpy – **ETE**) koji opisuju SPLET mehanizam. Ovako definisani termodinamički parametri daju sliku o sposobnosti jedinjenja da doniranjem elektrona, protona ili vodonikovog

atoma izvrši inaktivaciju slobodno–radikalske vrste. Termodinamički parametri koji opisuju antioksidativni potencijal **CBH1–CBH9** prikazani su u Tabeli 3.15.:

(K) III01 ⁻)											
Reaktivni		l	METAN	JL]	BENZEN	1		
centar na	HAA	SE	Г–РТ	SPI	LET	HAA	SET	–PT	SPI	LET	
CBH1–CBH9	BDE	IP	PDE	РА	ETE	BDE	IP	PDE	PA	ETE	
				C	BH1	1					
N2–H	358	556	0	154	402	348	694	87	373	408	
				C	BH2						
С2″-ОН	373	550	19	191	380	404	714	123	446	391	
N2–H	362	552	7	161	398	383	714	102	413	402	
				C	BH3						
C4″-OH	381	FF 1	28	185	394	382	(00	127	407	408	
N2–H	355	551	3	156	398	348	688	94	372	409	
				C	BH4						
С2″-ОН	377	E 20	47	200	375	377	(02	118	422	388	
N2–H	355	528	25	158	395	348	693	88	376	405	
CBH5											
С2″-ОН	362		41	191	369	372		99	420	385	
С3″-ОН	365	519	44	200	363	374	706	101	430	376	
N2–H	355		34	133	420	348		75	343	438	
				C	BH6						
С3″-ОН	346		9	178	367	342		72	393	382	
C4″-OH	348	535	11	168	378	344	703	74	380	397	
N2–H	355		19	154	399	346		77	370	410	
				C	BH7						
С2″-ОН	320		52	135	382	386		135	419	402	
С3″-ОН	280	465	13	131	347	356	606	105	416	375	
С4″-ОН	313	465	45	133	377	381	090	130	420	396	
N2–H	294		27	78	414	346		94	344	437	
	-			C	BH8						
С3″-ОН	352		17	177	373	351		85	395	391	
C4″-OH	330	500	-5	157	371	328	711	61	370	392	
С5″-ОН	355	555	20	178	374	355	/11	89	399	391	
N2–H	356		21	152	402	349		83	374	410	
				C	BH9						
N2–H	357	571	-16	153	402	349	691	91	370	412	

Tabela 3.15. Termodinamički parametri koji opisuju antioksidativni potencijal **CBH1–CBH9** (kJ mol⁻¹)

Uzimajući u obzir da je molekul u neutralnoj formi stabilniji od radikal-katjona, anjona i radikala koji se iz njega dobijaju, ovi termodinamički procesi će dati pozitivne vrednosti promena entalpija. Takođe, obzirom da se govori o termodinamičkim parametrima višestepenih reakcija (SET–PT i SPLET), favorizovanost nekog mehanizma određivaće promena entalpije prvog koraka reakcije. Detaljan opis antiradikalskog kapaciteta i parametara predstavljenih u prethodnoj tabeli dat je u sledećim poglavljima.

3.6.1.1. Entalpija disocijacije veze i afinitet prema protonu

Poznato je da su vrednosti BDE za -OH i -NH grupe od posebnog značaja za razumevanje mehanizma inaktivacije slobodnih radikala [79-85]. To znači da jedinjenja sa slabom (polarizovanom) O-H ili N-H vezom veoma brzo reaguju sa slobodnim radikalima donirajući vodonikov atom i samim tim pokazuju visoku antioksidativnu aktivnost. Sposobnost benzohidrazidskih derivata 4– hidroksikumarina da inaktiviraju slobodne radikale je generalno povezana sa postojanjem –OH i –NH grupa na određenom položaju u njihovoj strukturi. Optimizacija geometrije radikalskih vrsta nastalih nakon homolitičkog cepanja O-H ili N-H veza za CBH1-CBH9 vrši se polazeći od optimizovane geometrije neutralnih molekula. Uklanjanje H-atoma sa pozicija C2"-OH, C3"-OH, C4"-OH, C5"-OH i C7"-NH daje različite vrste radikala. Na primer, radikalska vrsta nastala uklanjanjem H-atoma iz C2"-OH grupe CBH1 naziva se CBH1-C2"O'. Preostale radikalske vrste se generišu i imenuju na isti način. Treba napomenuti da je optimizacija geometrije radikalskih vrsta izvršena korišćenjem istog teorijskog modela i u istim rastvaračima kao i neutralnih molekula. Izračunate vrednosti BDE za sve derivate CBH1 prikazane su u tabeli 3.11. Iz izračunatih vrednosti jasno se vidi da su najniže vrednosti BDE dobijene za poziciju N2-H, u oba rastvarača, za jedinjenja koja ne poseduju više od jedne -OH grupe u svojoj strukturi. Jedinjenja sa više -OH grupa (osim CBH5), pokazuju povoljnije BDE vrednosti kada dolazi do homolitičkog raskidanja veze na -OH grupama.

Heterolitičko cepanje N–H i O–H veza dovodi do formiranja odgovarajućih anjona. Ovaj proces se smatra prvim korakom SPLET mehanističkog puta i opisan je termodinamičkim parametrom **PA**. Visoke vrednosti **PA** ukazuju na to da SPLET mehanizam nije operativan u nepolarnim uslovima. S druge strane, vrednosti **PA** dobijene u metanolu su značajno niže, zbog povećane stabilizacije anjona u polarnim rastvaračima. Analizom vrednosti **PA**, jasno je da je apstrakcija protona iz –NH mnogo lakša nego iz –OH grupe. Najniža **PA** vrednost, pronađena za **CBH7**, implicira da je ovo jedinjenje najreaktivnije po SPLET mehanizmu. Ovakvi rezultati su u dobroj saglasnosti sa *in vitro* dobijenim rezultatima.

3.6.1.2. Jonizacioni potencijal

Uklanjanje slobodnih radikala se takođe može postići doniranjem jednog elektrona iz antioksidanta slobodnom radikalu, nakon čega sledi formiranje radikal katjona. Sposobnost ispitivanog jedinjenja da donira elektron povezana je sa produženom delokalizacijom elektrona preko celog molekula. Poznato je da su mnogi prirodni proizvodi kao što su flavonoidi, koji imaju visok stepen π -delokalizacije, aktivniji kao antioksidativni agensi. Vrednost koja meri ovu sposobnost je **IP**. Izračunate **IP** vrednosti za ispitivana jedinjenja u metanolu i benzenu date su u tabeli 3.11. Uopšteno govoreći, molekuli sa nižim **IP** vrednostima se lakše uključuju u reakcije inaktivacije radikala. Sva ispitivana jedinjenja pokazuju međusobno slične i visoke vrednosti za ovaj termodinamički parametar. Na osnovu prikazanih vrednosti za **IP**, može se zaključiti da je ovaj mehanistički put malo verovatan i da ga treba isključiti iz dalje diskusije.

3.6.1.3. Mehanizam antioksidativnog delovanja **CBH1–CBH9** na osnovu dobijenih termodinamičkih parametara koji opisuju antioksidativni potencijal

Na osnovu vrednosti **BDE**, **IP**, **PDE**, **PA** i **ETE** može se pretpostaviti dominantan mehanizam antioksidativnog delovanja **CBH1–CBH9**. Dobijene vrednosti termodinamičkih parametara ukazuju da se može očekivati dobra antioksidativna aktivnost ovih jedinjenja. Utvrđeno je da su vrednosti **PA** u metanolu bile znatno niže od odgovarajućih **BDE**. Ovo implicira da je **SPLET** preovlađujući mehanizam antioksidativnog delovanja u polarnom okruženju. Dobijene vrednosti **PA** sugerišu da jedinjenje **CBH7** pokazuje najveći antioksidativni kapacitet, što se dobro slaže sa vrednostima *in vitro* testova. S druge strane, vrednosti **BDE** i **PA** ukazuju na konkurenciju HAA i SPLET mehanizama u nepolarnom medijumu.

3.6.1.3.1. Radikali i anjoni ispitivanih benzohidrazidskih derivata CBH1–CBH9

Potencijalno antioksidativno dejstvo ispitivanih jedinjenja zahteva homolitičko i heterolitičko cepanje veze između vodonika i heteroatoma. Ovo dovodi do formiranja odgovarajućih radikala i anjona. Relativna stabilnost ovih hemijskih vrsta zavisi od njihove sposobnosti delokalizacije nesparenih elektrona ili naelektrisanja. U zavisnosti od njihove relativne stabilnosti može se odrediti koja funkcionalna grupa ili pozicija će najverovatnije doprineti antioksidativnoj aktivnosti. Prema termodinamičkim parametrima predstavljenim u tabeli 3.15., radikalske vrste izvedene iz –NH grupa su generalno stabilnije od onih koje su nastale homolitičkim cepanjem O–H veze. Ovo ponašanje se može objasniti ispitivanjem strukture radikalskih vrsta dobijenih iz **CBH1–CBH9.** Glavni razlog stabilnosti radikala nastalih homolitičkim cepanjem veze između azota i vodonika, leži u činjenici da atom azota rehibridizuje iz sp^3 u sp^2 , što dovodi do toga da ispitivana jedinjenja postanu planarna.

Planarna konformacija omogućava delokalizaciju spina preko celog molekula (Slika 3.11.), a bolja delokalizacija dovodi do veće stabilnosti svih ispitivanih radikalskih vrsta. S druge strane, u slučaju kada se antioksidativno dejstvo ostvaruje preko –OH grupe, spin je delokalizovan samo na B prstenu molekula.

Raspodele elektronske gustine preko strukture ispitivanih anjona pokazuju da je u planarnoj konformaciji negativno naelektrisanje bolje delokalizovano nego u neplanarnoj (slika P20). Pošto su atomska naelektrisanja važna za razumevanje drugog koraka SPLET mehanizma, raspodela elektronske gustine svih anjonskih vrsta proisteklih iz ispitivanih derivata su izračunate da bi se odredili regioni visoke elektronske gustine koji mogu ukazati na atome odgovorne za sledeći korak, odnosno, prenos elektrona. Najizraženiji efekat delokalizacije je pronađen za anjon atoma azota

u položaju $C7''-N^-$ koji delokalizuje svoje negativno naelektrisanje preko atoma kiseonika na karbonilnoj grupi i odgovarajućih atoma kiseonika na B prstenu.

Slika 3.11. Delokalizacija spinske gustine CBH1•–CBH9•

Dodatna delokalizacija spina i naelektrisanja (CBH1–CBH9)–N2⁻ i (CBH1– CBH9)–N2[•] omogućena je kod jedinjenja koja poseduju OH grupu u položaju C2". Kao što je već napomenuto, ova jedinjenja formiraju šestočlani *pseudo*–prsten koji omogućava stabilizaciju strukture odgovarajućeg anjona i radikala jer omogućava bolju delokalizaciju naelektrisanja/spina kroz molekul antioksidanta. Formiranje ovog prstena omogućava jedinjenjima CBH5 i CBH7 da pokažu bolji antioksidativni potencijal od njihovih strukturnih analoga CBH6 i CBH8.

3.6.2. Termodinamička ispitivanja antiradikalske aktivnosti CBH1–CBH9

Da bi se antiradikalska aktivnost jedinjenja ispitala pomoću termodinamičkih proračuna potrebno je definisati termodinamičke parametre koji opisuju mehanizme antiradikalske aktivnosti, HAA, SET–PT, SPLET i RAF. Takođe, potrebno je uvesti i jednačine kojima se pomenuti parametri mogu dobiti koristeći Gibsove energije hemijskih vrsta dobijene optimizacijom pomoću programskog paketa Gaussian 09.

Jednačine koje opisuju mehanizme antiradikalskog delovanja (HAA, SET–PT, SPLET i RAF) date su u poglavlju *Mehanizmi antioksidativnog delovanja*, dok su termodinamički parametri koji ih opisuju dati u sledećim jednačinama:

$\Delta_r G_{HAA} = G(Ar - O^{\bullet}) + G(ROH) - G(Ar - OH) - G(RO^{\bullet})$	(3.6)
--	-------

$$\Delta_r G_{SET} = G(\text{Ar}-\text{OH}^{\bullet+}) + G(\text{RO}^{-}) - G(\text{Ar}-\text{OH}) - G(\text{RO}^{\bullet})$$
(3.7)

$$\Delta_r G_{PT} = G(Ar - O^{\bullet}) + G(ROH) - G(Ar - OH^{\bullet +}) - G(RO^{-})$$
(3.8)

$$\Delta_r G_{SPL} = G(Ar - O^-) + G(ROH) - G(Ar - OH) - G(RO^-)$$

$$(3.9)$$

$$\Delta_r G_{SPL} = G(Ar - O^-) + G(ROH) - G(Ar - OH) - G(RO^-)$$

$$(3.10)$$

$$\Delta_r G_{ET} = G(Ar - O^{\bullet}) + G(RO^{-}) - G(Ar - O^{-}) - G(RO^{\bullet})$$
(3.10)

$$\Delta_r G_{RAF} = G([RO - Ar - OH]^{\bullet}) - G(Ar - OH) - G(RO^{\bullet})$$
(3.11)

Kao i u slučaju termodinamičkih parametara za određivanje antioksidativnog potencijala samog jedinjenja, prvi korak višestepenog mehanizma (SET–PT i SPLET) će se uzimati u obzir kada se razmatra favorizovanost reakcionih puteva. Takođe, treba naglasiti da obzirom da HAA, SET–PT i SPLET mehanizmi opisuju sumarno istu reakciju (isti reaktanti i isti proizvod – drugačiji reakcioni put), zbir $\Delta_r G$ prvog i drugog koraka mora odgovarati ukupnoj $\Delta_r G$ reakcije, odnosno zbir $\Delta_r G_{SET}$ i $\Delta_r G_{PT}$, kao i $\Delta_r G_{SPL}$ i $\Delta_r G_{ET}$ mora biti jednak $\Delta_r G_{HAA}$.

Bitno je napomenuti da su sva termodinamička ispitivanja u naredna dva poglavlja vršena u neutralnoj sredini i prisustvo kiselo–baznih vrsta **CBH1–CBH9** nije uzeto u obzir. Uticaj pH vrednosti na mehanizam reakcije biće tema poglavlja o kinetici.

3.6.1.1. Inaktivacija hidroksi radikala

Kako predstavlja najaktivniju radikalsku vrstu, hidroksi radikal predstavlja česticu čija je inaktivacija najčešće ispitivana u literaturi [79–85]. Često se primenom EPR spektroskopije i sličnih metoda ispituje upravo inaktivacija ovog radikala. U okviru ovog poglavlja ispitivana je inaktivacija hidroksi radikala pomoću **CBH1–CBH9**, a u tabeli 3.12 predstavljeni su dobijeni rezultati.

Kao što se može videti iz dobijenih termodinamičkih parametara, HAA i SPLET mehanizam se u polarnoj sredini uglavnom nalaze u kompeticiji. Detaljnijim pregledom parametara koji opisuju HAA mehanizam, može se videti da je položaj N2–H najpovoljniji položaj kod jedinjenja sa jednom hidroksilnom grupom, dok je kod jedinjenja sa dve hidroksilne grupe, ovaj položaj u kompeticiji sa ostalim položajima. Kada jedinjenje poseduje više od dve hidroksilne grupe, usled njihove međusobne stabilizacije, ovaj položaj se pokazao kao manje povoljan. Takođe, značajno je primetiti da HAA mehanizam ne zavisi od polarnosti okruženja, kao što je i očekivano.

Reaktivni		М	etano	L]	BENZEN	J	
centar na	HAA	SET	–PT	SPL	LET	HAA	SET	-PT	SPI	LET
CBH	ΔG haa	ΔG_{ET}	ΔG_{PT}	ΔG_{SPL}	ΔG_{ET}	ΔG hat	ΔG_{ET}	ΔG_{PT}	ΔG_{SPL}	ΔG_{ET}
	•			С	BH1					
N2–H	-140	169	-309	-152	12	-139	367	-506	-223	84
				С	BH2					
С2″-ОН	-117	1()	-279	-123	6	-113	2(0	-473	-190	77
N2–H	-144	162	-305	-151	8	-148	360	-507	-220	72
				С	BH3					
C4"-OH	-119	171	-290	-105	-14	-115	270	-484	-165	50
N2–H	-139	171	-310	-151	12	-144	570	-514	-226	82
				C	BH4					
С2″-ОН	-125	126	-261	-106	-19	-119	261	-480	-176	57
N2–H	-145	150	-281	-149	4	-148	501	-509	-222	74
CBH5										
С2″-ОН	-143		-298	-126	-17	-146		-507	-210	64
С3″-ОН	-144	155	-298	-122	-22	-144	361	-505	-193	49
N2–H	-141		-295	-149	8	-148		-509	-225	77
				C	BH6					
С3″-ОН	-131		-263	-105	-26	-122		-503	-165	43
C4″-OH	-136	132	-268	-114	-21	-122	381	-503	-176	54
N2–H	-140		-272	-172	32	-145		-525	-252	107
				C	BH7					
С2″-ОН	-144		-291	-129	-16	-142		-513	-198	56
С3″-ОН	-166	147	-312	-145	-21	-165	271	-536	-223	59
C4″-OH	-142	147	-289	-126	-17	-138	571	-509	-195	56
N2–H	-139		-286	-146	7	-144		-515	-224	80
				C	BH8					
С3″-ОН	-122		-260	-111	-11	-108		-463	-175	68
C4″-OH	-150	120	-287	-115	-34	-137	255	-492	-177	41
С5″-ОН	-128	130	-266	-114	-14	-153	333	-508	-282	129
N2–H	-144		-281	-168	25	-146		-500	-243	97
				C	BH9					
N2–H	-142	191	-332	-152	11	-147	364	-511	-228	81

Tabela 3.16. Termodinamčki parametri inaktivacije hidroksi radikala pomoću CBH1-CBH9

Kada je, pak, u pitanju SPLET mehanizam, situacija je nešto drugačija. I u polarnoj i u nepolarnoj sredini, favorizuje se nastanak anjona u položaju N2–H. Jedino je u slučaju **CBH7** u polarnom medijumu položaj C3″–OH u kompeticiji sa N2–H. Takođe, jedini slučaj gde je HAA mehanizam povoljniji od SPLET mehanizma jeste jedinjenje **CBH7** u polarnoj sredini.

Ipak, interesantan trend koji karakteriše ova dva mehanizma, a kad je u pitanju inaktivacija hidroksi radikala, javlja se kod jedinjenja koja poseduju tri –OH grupe, i u polarnom rastvaraču. Naime, iako je HAA u ovom slučaju termodinamički povoljniji korak od SPL koraka, oba koraka SPLET mehanizma su egzergona. Iako je ovakva pojava neuobičajena, ona indicira da oba koraka SPLET mehanizma moramo uzeti u obzir kada određujemo dominantan mehanizam inaktivacije radikala.

Kao što je i očekivano, inaktivacija OH radikala prema RAF mehanizmu (Tabela P11) je, iako su parametri koji ga opisuju povoljni, vrednosti promena Gibsovih energija reakcije nisu dovoljno egzergone da bi se ovaj mehanizam našao u kompeticiji sa SPLET i HAA mehanizmom (Tabele 3.16. i P11).

3.6.1.2. Inaktivacija ostalih radikalskih vrsta

Kako bi se detaljno ispitala antiradikalska aktivnost novosintetisanih benzohidrazidskih derivata 4–hidroksikumarina, pored inaktivacije hidroksi radikala, inaktivacija različitih slobodno radikalskih vrsta uzeta je u razmatranje. Njihove strukture prikazane su na slici 3.12..

Slika 3.12. Optimizovane strukture ispitivanih radikalskih vrsta

Prema strukturnim osobinama moguće je podeliti ih u tri grupe. Prvu grupu čine metoksi (•OCH₃), etoksi (•OCH₂CH₃), izopropiloksi (•OCH(CH₃)₂) i *t*-butoksi radikal

(•OC(CH₃)₃) koji se smatraju visoko reaktivnim radikalima. Druga grupa obuhvata hidroperoksi (•OOH), zatim dva alkil-peroksi (•OOCH3 i •OOCH2CH3) kao i jedan alil-peroksi radikal ('OOCH=CH2). Treći tip radikala su hlorovani metil peroksi radikali. Zbog negativnog induktivnog efekta atoma halogena, pretpostavlja se da će ovi radikali pokazati reaktivnost sličnu njihovim alkil-peroksi ekvivalentima. Ovi radikali su posebno značajni jer nastaju kao produkti metabolizma nekih sintetičkih materijala. Na primer, dobro je poznato da je ugljen-tetrahlorid (CCl₄) toksičan za ćelije. Glavni toksični efekat CCl4 se manifestuje u jetri, što izaziva blokadu ekstrakcije masti, što izaziva razne vrste poremećaja u metabolizmu [150]. Kada se CCl4 nađe u prisustvu O2^{•-}, proizvodi se trihlorometil radikal (•CCl3). U okruženju sa niskom koncentracijom kiseonika, 'CCl₃ se kovalentno vezuje za makromolekule (npr., citohrom P-450), što ometa njihove biološke aktivnosti. S druge strane, u oblastima bogatim kiseonikom, •CCl₃ lako reaguje sa molekulom O₂, formirajući tako •OOCCl₃ koji ima znatno širi spektar toksičnih aktivnosti [150-152]. Hloroform (CHCl₃), sa druge strane, pokazuje nižu toksičnost od CCl4 [151]. Ovo jedinjenje se koristi u različite svrhe, na primer, kao rastvarač, kao sastojak lekova protiv kašlja, u tečnostima za ispiranje usta, itd. [152]. Niža toksičnost hloroforma se pripisuje višoj energetskoj barijeri pri proizvodnji •CCl3. Uticaj broja halogenih supstituenata na aktivnost hlorom supstituisanih metil-peroksi radikala biće jedno od pitanja kojima se bavi ovo poglavlje.

3.6.1.3. Mehanizam inaktivacije radikalskih vrsta

Na osnovu termodinamičkih parametara odgovarajućih hemijskih reakcija (3.6– 3.11) može se proceniti najpovoljniji mehanizam aktivnosti inaktivacije odabranih slobodno–radikalskih vrsta pomoću **CBH1–CBH9**.

Poznato je da elektronska svojstva slobodnih radikala imaju značajan uticaj na mehanizme njihovog delovanja. Da bi se procenio uticaj različitih radikala i njihovih elektronskih svojstava, potrebno je izračunati razliku u Gibsovoj slobodnoj energiji između proizvoda i reaktanata. Dobijene vrednosti su korišćene kao glavni kriterijum za procenu da li je reakcija bila spontana ili ne. Drugim rečima, termodinamički povoljan reakcioni put je onaj za koji se dobijaju negativne vrednosti promene Gibsove slobodne energije. Najniža vrednost određenog termodinamičkog parametra definiše koji mehanizam može biti dominantan. Ovi parametri su predstavljeni u tabelama P6– P15, za alkoksi, alkil–peroksi i hlorovane metil–peroksi radikale. Takođe, u tabeli 3.17. dati su parametri za najmanje voluminozne radikale iz svake grupe, da bi se mogao zanemariti uticaj sternih smetnji za nedostupne položaje funkcionalnih grupa koje učestvuju u reakcijama inaktivacije pomenutih radikala. Treba istaći da su dobijeni rezultati, primenom jednačina 3.6–3.11, međusobno konzistentni.

	,	HAT	SET	-PT	SPL	EΤ	HAT	SET	-PT	SPL	LET
		$\Delta \mathbf{r} \mathbf{G}$ hat	$\Delta r G_{SET}$	$\Delta \mathbf{r} \mathbf{G} \mathbf{P} \mathbf{T}$	$\Delta \mathbf{r} \mathbf{G}_{SPL}$	$\Delta \mathbf{r} \mathbf{G}$ et	$\Delta \mathbf{r} \mathbf{G}$ hat	$\Delta r G_{SET}$	$\Delta \mathbf{r} \mathbf{G} \mathbf{P} \mathbf{T}$	$\Delta \mathbf{r} \mathbf{G}_{SPL}$	$\Delta \mathbf{r} \mathbf{G}$ et
]	Metanol					Benzen		
					•00H	[
CBH1	N2–H	-2	256	-258	-101	99	-4	443	-447	-163	159
СВН2	N2–H	6	260	-254	-122	114	-13	450	-463	-188	175
CDI12	С2"-ОН	31	200	-230	-46	77	41	430	-409	-92	133
СВНЗ	N2–H	-6	249	-255	-100	95	-13	135	-448	-163	150
CDI 15	C4"-OH	21	247	-228	-72	93	22	400	-413	-130	152
CBH4	N2–H	15	254	-290	-98	113	-13	435	-448	-162	149
Сын	С4"-ОН	13	204	-241	-55	68	16	400	-418	-116	133
	N2–H	-5		-221	-124	119	-10		-466	-192	183
CBH5	С2"-ОН	0	216	-217	-65	65	13	456	-443	-117	129
	С3"-ОН	2		-214	-57	59	15		-441	-106	121
	N2–H	-3		-239	-100	97	-11		-462	-165	154
CBH6	С3"-ОН	-11	236	-247	-75	64	-13	451	-463	-151	138
	C4"-OH	-9		-245	-84	75	-11		-462	-138	127
	N2–H	-6		-230	-118	112	-10		-441	-183	173
CBH7	С2"-ОН	16	225	-209	-61	76	27	430	-403	-116	143
CDII/	С3"-ОН	-12	225	-236	-65	53	-2	450	-432	-118	116
	С4"-ОН	10		-215	-64	73	-18		-448	-222	204
	N2–H	-2		-235	-96	94	-9		-455	-165	156
CBH8	С3"-ОН	-6	224	-240	-78	72	-7	447	-453	-138	132
CDI 10	С4"-ОН	-28	234	-261	-94	66	-30	447	-476	-164	134
	С5"-ОН	-5		-238	-75	70	-3		-450	-135	132
CBH9	N2–H	-4	278	-282	-102	98	-12	439	-451	-168	156
					•OOCH	2Cl					
CBH1	N2–H	-21	201	-222	-65	45	-22	367	-389	-105	84
CBH2	N2–H	-26	206	-232	-86	59	-31	374	-405	-131	99
CDI12	С2"-ОН	12	200	-193	-10	22	23	574	-351	-34	58
СВНЗ	N2–H	-24	19/	-219	-65	40	-31	359	-390	-105	75
CDI15	C4"-OH	2	174	-192	-37	39	4	557	-355	-73	77
CBH4	N2–H	-25	199	-224	-62	36	-31	359	-390	-104	74
	С4"-ОН	-5	177	-204	-20	14	-1	007	-360	-58	57
	N2–H	-23		-185	-88	64	-28		-408	-135	107
CBH5	С2"-ОН	-19	162	-181	-29	10	-5	380	-385	-59	54
	С3"-ОН	-16		-178	-21	4	-3		-383	-48	45
CBH6	N2-H	-21		-203	-65	43	-29		-404	-107	78
CDIIO	С3"-ОН	-29	182	-211	-39	9	-31	375	-406	-81	50
	C4"-OH	-27		-209	-48	21	-29		-404	-93	64
	N2-H	-25	-	-195	-82	-61	-28		-383	-125	-101
CBH7	С2"-ОН	-3	170	-173	-25	22	10	355	-345	-58	67
0.011	С3"-ОН	-31	1.0	-201	-29	-2	-20		-374	-60	40
	С4"-ОН	-9		-179	-28	18	-36		-390	-164	128
	N2-H	-21	4	-199	-60	-39	-27		-397	-107	80
CBH8	С3"-ОН	-25	179	-204	-42	17	-24	371	-395	-80	56
	C4"-OH	-47		-226	-58	11	-48		-418	-106	58
	С5"-ОН	-23		-202	-39	16	-21		-392	-77	56
CBH9	N2–H	-23	223	-246	-66	43	-30	364	-393	-110	80

Tabela 3.17. Termodinamički parametri koji opisuju HAA, SET–PT i SPLET mehanizam inaktivacije hidroperoksi i hlormetilperoksi radikala pomoću **CBH1–CBH9** (kJ mol⁻¹)

Dobijeni rezultati ukazuju da SET–PT nije termodinamički povoljan mehanizam zbog činjenice da su vrednosti $\Delta_r G_{SET}$ pozitivne, što ukazuje na endergonu reakciju. Slična slika je dobijena i za reakcije koje prate RAF mehanizam. Uprkos činjenici da se često dobijaju pozitivne vrednosti za $\Delta_r G_{RAF}$, ove reakcije se ne smeju zanemariti. Naročito ako se zna da male pozitivne vrednosti (<40 kJ/mol) znače da treba voditi računa o ovom reakcionom putu. Za sve pozicije za koje Fukui indeks predviđa da su reaktivne, vrednosti termodinamičkih parametara su izračunate i date u Prilogu A (Tabele P11–P16). Fukui indeksom predviđeni položaji za jedinjenja **CBH1–CBH9** dati su na slici P21. Položaji koji se najčešće javljaju kao povoljni bili su C7, C5" i C6", pa su ovi položaji ispitani za sva jedinjenja, Jedinjenja **CBH8** i **CBH9** nemaju slobodan položaj C5", tako da kod ovih jedinjenja on nije ispitivan.

Analiza vrednosti datih u tabelama 3.17. ali i P6–P10 pokazuje da su termodinamički parametri koji opisuju HAA kao i prvi korak SPLET mehanizma, $\Delta_r G_{HAT}$ i $\Delta_r G_{SPL}$, negativni što ukazuje da su oba mehanizma termodinamički moguća. Međutim, reakcija prenosa atoma vodonika je manje egzergona od apstrakcije protona, što čini SPLET dominantnim mehaničkim putem, u većini slučajeva. Takođe, bitno je napomenuti da je N2–H položaj uglavnom najpovoljniji položaj za formiranje anjonske i radikalske vrste u oba medijuma, dok je kod jedinjenja sa tri OH grupe, formiranje radikala u nekim slučajevima jednako povoljno ili čak povoljnije na nekoj od OH grupa. Detaljniji opis mehanizama biće dat u sledećem poglavlju.

3.6.1.3.1. SPLET i HAA mehanistički put

Kao što je pomenuto u prethodnom odeljku, najverovatniji put reakcije inaktivacije radikala je SPLET mehanizam. Ipak, pažljivo ispitivanje rezultata otkriva zanimljiv trend u vezi sa vrednostima $\Delta_r G_{SPL}$. Kao što se i očekivalo iz struktura i iz *in vitro* studija, najbolju aktivnost inaktivacije slobodnih radikala ispoljavaju jedinjenja CBH7 i CBH8. Međutim, jedinjenja CBH2 i CBH5 pokazuju neočekivano niske vrednosti $\Delta_r G_{SPL}$ u poziciji N2–H, što ukazuje na odličnu aktivnost kada je u pitanju inaktivacija slobodnih radikala pomoću ovih jedinjenja u poređenju čak i sa derivatima koji imaju jednu ili dve OH grupe više. Ovo je posledica dodatne stabilizacije anjona intramolekulskom vodoničnom vezom koja se formira između karbonilnog kiseonika na poziciji C7" i -OH grupe na poziciji C2". Kao što je već detaljno objašnjeno u prethodnim poglavljima, formiranje intramolekulske vodonične veze omogućava bolju delokalizaciju negativnog naelektrisanja sa azota kroz pseudo-šestočlani prsten formiran zahvaljujući pomenutoj intramolekulskoj vodoničnoj vezi. Ova vrsta intramolekulske vodonične veze postoji u slučaju anjona ali i radikala formiranih u položaju N2-H poziciji kod CBH2, CBH5 i CBH7. Ovakva stabilizacija čini ovaj položaj posebno važnim za antioksidativni efekat pomenutih jedinjenja.

Prema dobijenim rezultatima, inaktivacija radikala pomoću ispitivanih jedinjenja se odvija prema SPLET mehanizmu, osim ako je apstrakcija protona sa pozicije N2–H sprečena zbog sternih smetnji, onda se to može odvijati preko –OH grupa na aromatičnom prstenu. Iako je SPLET dominantan mehanistički put, u kiseloj sredini ili aprotičnom, nepolarnom rastvaraču u kome formiranje anjona nije moguće, treba uzeti u obzir HAA mehanizam. Pažljivom analizom dobijenih rezultata, može se videti da su vrednosti Δ_rG_{HAA} za poziciju N2–H prilično slične, bez obzira na rastvarač ili broj i položaj –OH grupa fenil/katehol dela molekula. Generalno govoreći, položaj N2–H je najpovoljniji kada je u pitanju inaktivacija slobodnih radikala za sva ispitivana jedinjenja, osim za **CBH7** i **CBH8**. To znači da su ove pozicije na osnovu vrednosti termodinamičkih parametara jednake, a ponekad i termodinamički povoljnije u odnosu na položaj N2–H, pogotovo ako su radikali sa kojima reaguje ispitivano jedinjenje voluminozniji (slika 3.12.), jer tada dolazi do izražaja efekat sternih smetnji koji smanjuje mogućnost apstrakcije atoma vodonika sa ovog položaja. Formiranje stabilnih azotnih radikala na azotu vezanom za C7″ u svim jedinjenjima je posledica planarnosti dobijenih radikala što omogućava dobru delokalizaciju nesparenog elektrona preko kumarinske osnove i (poli)fenolnog dela jedinjenja.

Bitno je napomenuti da upoređivanjem samih radikalskih vrsta, lako je primetiti da favorizovanost SPLET mehanizma u odnosu na HAA u nepolarnoj sredini značajno opada sa povećanjem stabilnosti samog radikala.

3.6.2. Kinetička ispitivanja antiradikalske aktivnosti; Postuliranje SPLET–RRC mehanizma

U prethodnim poglavljima pokazalo se da u većini slučajeva pozicija N2–H zaslužna za antioksidativni potencijal ispitivanih jedinjenja. Da bi se detaljnije ispitao mehanizam inaktivacije jedinjenja za predstavnike antioksidanata i slobodnih radikala uzeti su **CBH1** i hidroksi radikal. Iako nije pokazalo najveći stepen antioksidativne aktivnosti, jedan od razloga zašto je jedinjenje **CBH1** značajno za ispitivanje kinetičkih parametara koji opisuju reakcije inaktivacije radikala jeste da usled nedostatka –OH grupa neće postojati veliki broj sporednih reakcija, a u isto vreme, svi položaji na aromatičnom prstenu biće dostupni za ispitivanje RAF mehanizma (koji može biti značajan kao prvi ili treći korak višestepenih mehanizama ispitivanih u prethodnim poglavljima).

Takođe, u ovom poglavlju razmatran je i uticaj pH vrednosti na antioksidativni potencijal ispitivanih jedinjenja, što je veoma značajno za različite biološke, ali i ekosisteme. Ispoljavanje antioksidativnog potencijala pri određenim pH vrednostima može da bude od krucijalnog značaja za primenu ispitivanih jedinjenja, jer je tako moguće targetirati okruženja u kojima je antioksidativna aktivnost potrebna. Ovako delikatnu promenu aktivnosti teško je primetiti kod visoko aktivnih jedinjenja kao što su **CBH7** i **CBH8**, koja će zbog velikog broja aktivnih centara sa promenom pH vrednosti pre menjati mehanizam dejstva, nego stepen aktivnosti. To čini jedinjenje **CBH1** idealnim za ispitivanje mehanizma antioksidativne aktivnost pri različitim pH vrednostima.

3.6.2.1. EPR pri različitim pH vrednostima

Kao što je ranije napomenuto, EPR spektroskopija je najpopularnija instrumentalna metoda kada je u pitanju ispitivanje antiradikalske aktivnosti jedinjenja prema hidroksi radikalu. Antioksidativna aktivnost CBH1 prema 'OH praćena je EPR spektroskopijom 3 minuta nakon početka Fentonove reakcije na pH vrednostima od 7,4 i 8,4. Spektri DEPMPO-HO' na dve pH vrednosti kvalitativno su se razlikovali jedan od drugog zbog nižeg efektivnog prinosa 'OH iz Fentonove reakcije pri alkalnoj pH vrednosti [153]. Spektri DEPMPO-HO' u kontrolnoj i tretiranoj smeši prikazani su na slici 3.13. Iako spektri pri višim pH vrednostima nisu imali kvalitet tipičan za DEPMPO-HO' pri kiselom ili neutralnom pH, ipak su sadržali karakteristike neophodne za vernu procenu proizvodnje hidroksi radikala. Antiradikalska aktivnost CBH1 je otkrivena pri obe pH vrednosti, ali sa znatno izraženijim antioksidativnim efektom u alkalnoj sredini. Naime, intenzitet inaktivacije hidroksi radikala, procenjen intenzitetom druge od osam linija DEPMPO-HO' spektra, u alkalnim uslovima opada za približno 56%, dok je pri neutralnom pH ovaj pad procenjen na samo oko 16% u odnosu na sadržaj hidroksi radikala proizvedenog u Fentonovoj reakciji.

Slika 3.13. Spektri elektronske paramagnetne rezonance DEPMPO–HO[•] generisanog u Fentonovoj reakciji na 7.4 (levo) i 8.4 (desno) sa (crvena) i bez (crna linija) CBH1

3.6.2.1.1. Određivanje pKa vrednosti CBH1

Kako su EPR spektri prikazali interesantnu promenu u aktivnosti jedinjenja sa promenom pH vrednosti rastvora pretpostavljeno je da je pojava anjonske vrste zaslužna za promenu u antioksidativnoj aktivnosti ispitivanog jedinjenja. Da bi se odredila pKa vrednost **CBH1**, apsorpcioni spektri su snimljeni pri različitim pH vrednostima u opsegu talasnih dužina od 200 – 500 nm, slika 3.14. Ova slika pokazuje jasnu korelaciju između pH i vrednosti UV–Vis apsorpcije **CBH1**.

Može se primetiti da protonovani i deprotonovani oblici CBH1, pokazuju maksimalnu apsorpciju na 325 i 370 nm (Slika 3.14.). Da bi se utvrdilo u kojim jonskim oblicima postoji ovo jedinjenje, analiziran je odnos intenziteta apsorpcije na 340 i 370 nm. Pri talasnoj dužini od 370 nm apsorpcija jonizovanog oblika dostiže svoju maksimalnu vrednost, a apsorpcija protonovanog oblika je praktično zanemarljiva. Sa druge strane, talasna dužina od 340 nm je talasna dužina na kojoj obe vrste apsorbuju, ali apsorpcija jonizovanog oblika teži minimalnoj vrednosti. Vrednosti apsorpcije dobijene na 340 i 370 nm pri različitim pH vrednostima date su u tabeli P17. Konačno, utvrđena je linearna zavisnost apsorbancije **CBH1** na jednoj talasnoj dužini (340 nm) u odnosu na drugu (370 nm) na različitim pH vrednostima (slika P22). Ovo dovodi do zaključka da CBH1 ima samo jednu tačku ravnoteže (kada govorimo o reakciji prelaska neutralne u anjonsku vrstu). Podaci o apsorpciji mereni na 370 nm korišćeni su za izračunavanje pKa vrednosti, kao što je prikazano u tabeli 3.18. Zavisnost apsorbancije CBH1 u funkciji pH prikazana je na slici 3.15. Dobijena kriva pokazuje samo jednu prevojnu tačku pri pH = 8,5. Da bi se odredio pKa CBH1, pripremljena je serija pufera (pH = 8,4, 8,5, 8,6, 8,7) koji su sadržali ispitivano jedinjenje. Odgovarajući UV–Vis spektri prikazani su na slici P23. Ispitivano jedinjenje u kiseloj sredini (pH = 2,5) pojavljuje se u protonovanom (nejonizovanom) obliku (AM) sa apsorbancijom od 0,0479. U alkalnoj sredini pri pH = 11,6 ovo jedinjenje je u deprotonovanom (jonizovanom) obliku (A1) i odgovarajuća apsorbancija je 1,022. Vrednost pKa se izračunava korišćenjem jednačine (3.10). Dobijeni rezultati su prikazani u tabeli 3.18. Prosečna pKa vrednost CBH1 je 9,76.

$$pK_a = pH + \log \frac{A_M - A}{A - A_I}.$$
(3.10.)

рН	Absorbanca (370 nm)	рКа	Srednja vrednost pKa
2,5	0,0479	/	/
4,0	0,0574	/	/
5,5	0,1896	/	/
7,0	0,8381	/	/
8,4	0,8644	9,1144	
8,5	0,9885	9,9484	0.76
8,6	0,9909	10,0818	9,70
8,7	0,9633	9,8930	
9,5	0,8007	/	/
10,5	0,7874	/	/
11.6	1 022	/	/

Tabela 3.18. Vrednosti apsorpcije **CBH1** na 370 nm u pH opsegu 2,5–11,6 i pKa vrednosti određene korišćenjem vrednosti apsorbancije pri odgovarajućem pH (8,4–8,7)

Slika 3.15. Zavisnost apsorbancije od pH CBH1 u puferskim rastvorima pH 2,5-10,5

UV–Vis spektar **CBH1**[–] je simuliran (B3LYP-D3BJ/6-311++G(d,p)) i upoređen sa eksperimentalnim UV–Vis spektrom **CBH1** pri pH=8,4. Kao i eksperimentalni spektar, simulirani spektar pokazuje tri maksimuma apsorpcije koji se dosledno pomeraju ka većim talasnim dužinama. Ovo može biti posledica činjenice da eksperimentalni uzorak sadrži mešavinu nejonizovanih i jonizovanih oblika **CBH1** u puferskom rastvoru, dok se izračunati spektar odnosi na vođeni rastvor jonizovanog oblika. Da bi se postigla bolja saglasnost eksperimentalnih i izračunatih podataka određen je faktor skaliranja koji iznosi 0,915. Dok eksperimentalni UV–Vis spektar pokazuje maksimume apsorpcije na 370, 286 i 231 nm, odgovarajuće izračunate skalirane talasne dužine su 359, 295 i 238 nm (slika P24).

3.6.2.2. Ispitivanje mehanizama antioksidativnog delovanja

Prema EPR spektrima, **CBH1** pokazuje značajno povećanje aktivnosti pri pH = 8,4. Na osnovu utvrđene pKa vrednosti od 9,73, vodeni rastvor **CBH1** sadrži 94,4% neutralnih molekula i 5,6% monoanjona (**CBH1**⁻) pri pH = 8,4. Uprkos maloj količini anjonskog oblika, očigledno je da monoanjoni igraju važnu ulogu u antiradikalskoj aktivnosti ispitivanog jedinjenja. Iz tog razloga, antioksidativni putevi za neutralne i anjonske oblike **CBH1** su detaljno ispitani.

U okviru ovog ispitivanja razmatrane reakcije fokusirane su na CBH1–N2⁻ i odgovarajući radikal CBH1-N2⁻, dok je ponašanje CBH1-N1⁻ ukratko objašnjeno. Razlozi za to jesu termodinamička favorizovanost N2–H položaja, sterna zaštićenost N1–H, o čemu će biti više reči na kraju ovog poglavlja. Radi jednostavnosti prikaza CBH1–N2⁻ i CBH1-N2⁻ u daljem tekstu biće prikazani kao CBH1⁻ i CBH1⁻. Da bi se odabrali egzergoni reakcioni putevi za dalja kinetička istraživanja antiradikalske aktivnosti CBH1, izračunate su promene Gibsove slobodne energije sledećih reakcija koje se odnose na neutralne i anjonske forme:

Neutralna forma

HAT: CBH1 + ' OH → CBH1' + H ₂ O	(3.11)
--	--------

 $RAF: CBH1 + OH \rightarrow [CBH1-OH]$ (3.12)

ET:
$$CBH1 + OH \rightarrow CBH1^{+} + OH$$
 (3.13)

PL: $CBH1 + OH \rightarrow CBH1^- + H_2O$ (3.14)

Monoanjonska vrsta

 $\text{ET: } \mathbf{CBH1}^- + \mathbf{OH} \rightleftharpoons \mathbf{CBH1}^+ + \mathbf{OH}$ (3.15)

$$PT: CBH1' + OH \rightarrow CBH1' + H_2O$$
(3.16)

RAF:
$$CBH1^- + OH \rightarrow [CBH1-OH]^{--}$$
 (3.17)

Izračunate energije reakcije su sumirane u tabeli 3.19. Vrednost $\Delta_r G$ za mehanizam HAA (reakcije 3.11) pokazuje da **CBH1** reaguje sa HO• u oba položaja N1 i N2 (Tabela 3.19.). RAF putevi (reakcije 3.12.) su termodinamički povoljni u svim pozicijama.

SET–PT mehanizam se ne odvija zbog visoko endergonog prvog koraka (reakcija 8). S druge strane, HO⁻ spontano uzima proton od **CBH1** u egzergonoj reakciji 3.14 gde se formira **CBH1**⁻. Dalje, HO[•] uzima elektron od **CBH1**⁻ u reakciji 3.15, čime se dobija radikal **CBH1**[•]. Ovu blago endergonu reakciju karakteriše visoka konstanta brzine od 6×10^9 M⁻¹s⁻¹ i treba je uzeti u obzir. Prenos protona sa **CBH1**[•] na HO⁻ se dešava spontano u reakciji 3.16 gde se formira radikal anjon **CBH1**^{•-}. Može se zaključiti da i **CBH1** i njegov anjon paralelno prolaze kroz SPLET (reakcije 3.14 i 3.15) i SET–PT (reakcije 3.15 i 3.16) mehanizme sa HO[•]. RAF (reakcije 3.17) je takođe termodinamički povoljan mehanizam za **CBH1**⁻, dok se HAA ne odvija (što će biti objašnjeno kasnije). Gubitak protona iz **CBH1**⁻ nije uzet u obzir jer dianjoni **CBH1** ne postoje pri 8,4, ali i većim vrednostima pH.

	PC	voijie puteve ie		
Reakcija	Pozicija	ΔrG	G_{a}^{\mp}	k
3.11	N2	-139,6	49,6	3,34×10 ⁶
3,11	N1	-98,6	64,2	3,38×10 ⁵
3.12	C5	-46,8	49,5	4,75×10 ⁵
3.12	C6	-19,5	44,4	3,33×10 ⁶
3.12	C7	-28,3	52,3	1,55×10 ⁵
3.12	C8	-31,0	39,3	2,56×107
3.12	C2"	-39,2	35,6	2,65×107
3.12	C3"	-20,7	48,6	6,66×10 ⁵
3.12	C4"	-31,6	50,3	3,40×10 ⁵
3.12	C5"	-19,7	48,2	7,71×10 ⁵
3.12	C6"	-37,0	48,7	6,75×10 ⁵
3.13		160,0	/	/
3.14	N1	-149,0	/	1,91×109
3.15		9,4	14,3	6×109
3.16	N1	-126,4	/	1,91×109
3.17	C5	-48,6	42,7	6,76×10 ⁶
3.17	C6	-20,7	41,5	1,04×107
3.17	C7	-28,1	45,9	1,97×10 ⁶
3.17	C8	-39,4	39,6	2,21×107
3.17	C2"	-45,1	40,4	1,68×107
3.17	C3"	-19,9	45,0	2,67×10 ⁶
3.17	C4"	-33,8	41,7	9,90×10 ⁶
3.17	C5"	-19,2	44,3	3,56×10 ⁶
3.17	C6"	-43,9	40,2	1,76×107

Tabela 3.19. Promene Gibsove slobodne energije $\Delta_r G$ (kJ mol⁻¹) reakcija **CBH1** i **CBH1**⁻ sa HO[•]. Energije aktivacije G_a^{\ddagger} (kJ mol⁻¹) i konstante brzine k (M⁻¹s⁻¹) za sve termodinamički povoline puteve reakcije

Reakcija 3.15 zaslužuje dalju diskusiju. Ovaj prenos elektrona je veoma brza reverzibilna reakcija gde se ravnoteža pomera ka reaktantima. Konstanta ravnoteže od 0,7 ukazuje da reakcioni sistem sadrži oko 60 % **CBH1**⁻ i 40 % **CBH1**⁻. Razumno je očekivati da će ova reaktivna vrsta pokazati aktivnost prema hidroksilnom radikalu i doprineti ukupnoj antiradikalskoj aktivnosti **CBH1**. Imajući ovo u vidu, ispitane su sledeće reakcije **CBH1**⁻ i HO⁻, uključujući RRC:

Radikalska vrsta

ET: **CBH1** + \cdot OH \rightarrow **CBH1** + -OH (3.18)

ET:
$$CBH1^{-} + OH \rightarrow CB^{-} + OH \rightarrow CB + OH$$
 (3.19)

HAA: **CBH1**[•] + [•]OH \rightarrow [•]**CB**[•] + H₂O \rightarrow **CB** + H₂O (3.20)

RRC: **CBH1** + \cdot OH \rightarrow **CBH1–OH** (3.21)

Izračunate energije reakcija su sumirane u Tabeli 3.20, odakle se vidi da **CBH1**[•] ne reaguje po SET–PT mehanizmu zbog endergonog prvog koraka reakcije (13). Pokazano je da je prvi korak SPLET mehanizma (gubitak protona, reakcija 3.16)

termodinamički povoljan. Međutim, prenos elektrona sa anjona radikala na 'OH pri čemu se formira diradikal '**CB**' (reakcija 3.19) je endergon, zbog čega je dalja promena spinskog stanja koja dovodi do formiranja singletnog molekula **CB** je irelevantana. Prema HAA, formiranje diradikalskog '**CB**' je egzergono (3.20). Sve RRC reakcije su termodinamički povoljne, ali ona gde se 'OH vezuje za N2 je daleko egzergonije od onih gde se 'OH vezuje za atome ugljenika.

Štaviše, ovaj RRC put dovodi do formiranja novog jedinjenja (*E*)–*N*′–(1–(2,4– *dioksohroman–3–iliden)etil)–N–hidroksibenzohidrazida* (**CBH1–OH**). Gore predstavljeni rezultati su prikazani na šemi 3.1. Rezultati predstavljeni u tabelama 3.19. i 3.20., otkrivaju da je **CBH1–OH** nastaje preko SPLET–RRC mehanizma. Ovaj dvostruki antiradikalski mehanizam je prvi put predstavljen u radu publikovanom u okviru ove disertacije. On pokazuje da anjon igra ključnu ulogu u antiradikalskoj aktivnosti **CBH1**. Činjenica da se dovoljna količina **CBH1**[–] može proizvesti u blago baznoj sredini objašnjava značajno povećanje antiradikalske aktivnosti pri pH = 8,4.

Tabela 3.20. Promene Gibsove slobodne energije $\Delta_r G$ (kJ mol⁻¹) reakcija **CBH1** sa HO[•]. Energije aktivacije G_a^{\neq} (kJ mol⁻¹) i konstante brzine k (M⁻¹s⁻¹) za sve termodinamički povoljne

p die ve reakelje				
Reakcija	Pozicija	ΔrG	G [≠]	k
3.18		108,7	/	/
3.19		33,0	/	/
3.20	N1	-93,4	75,0	4,18×10 ³
3.21	C5	-40,5	47,4	1,08×10 ⁶
3.21	C6	-61,2	45,6	2,12×106
3.21	C7	-18,8	56,4	3,06×104
3.21	C8	-26,5	43,7	4,44×10 ⁶
3.21	C2"	-69,1	48,3	7,36×10 ⁵
3.21	C3"	-39,7	50,5	3,32x10 ⁵
3.21	C4"	-54,3	51,4	2,16×10 ⁵
3.21	C5"	-39,9	49,5	4,55×10 ⁵
3,21	C6"	-68,4	49,7	4,33×105
3.21	N2	-144,6	/	1,91×109

puteve reakcije

Šema 3.1. Sveukupan mehanizam antiradikalske aktivnosti CBH1 prema HO• u alkalnom rastvoru. Plava struktura predstavlja CBH1–OH, dok crvena struktura predstavlja CB

Sve gore prikazane egzergone reakcije su podvrgnute kinetičkom ispitivanju. Za većinu ispitivanih reakcija otkrivena su prelazna stanja. Sva locirana prelazna stanja su data na slikama P25–P27, dok su neki predstavnici dati na slici 3.16. Energije aktivacije i konstante brzine su izračunate i predstavljene u tabelama 3.19. i 3.20. Temperaturna zavisnost konstanti brzine je ilustrovana na slici P28. Kao što se može videti sa pomenute slike, efekti tunelovanja su znatno izraženiji kada se posmatraju reakcije koje prate HAT nego RAF mehanizam.

Slika 3.16. Optimizovane geometrije odabranih prelaznih stanja u antioksidativnim mehanizmima CBH1 u alkalnom rastvoru. Prelazna stanja za RAF mehanizam u poziciji C5 sa različitim hemijskim vrstama CBH1

Utvrđeno je da se neke reakcije javljaju bez prevazilaženja aktivacionih barijera. Takve reakcije su 3.14 i 3.16. Obe reakcije su ispitane na način objašnjen u metodologiji. Na primer, u reakciji 3.16 (prenos protona sa **CBH1** na ⁻OH), HO^{......}HN1 rastojanje je izabrano kao koordinata skeniranja i postepeno se skraćivalo. Slika P29 ilustruje formiranje odgovarajućih proizvoda bez prelaska energetskih barijera: **CBH1**^{•-} i H₂O. Kao što je već pomenuto, takođe je ispitan HAA put: CBH1⁻ + \cdot OH \rightarrow CB \cdot ⁻ + H₂O. Međutim, nađeno je da reaktanti CBH1⁻ + •OH se spontano pretvaraju u CBH1[•] + •OH. Dokaz za ovo otkriće je pronađen u NBO analizi (hipotetičkih) reaktanata CBH1- + •OH (slika P30). Gustina spina je delokalizovana preko C3, N1, N2 i O7" (0,23, 0,22, 0,36 i 0,13) CBH1 dela reakcionog kompleksa, čime se otkriva da ima radikalski karakter (CBH1[•]). Kiseonik OH grupe nosi negativno NBO naelektrisanje od -1,30 e, dok je njegova spinska gustina jednaka nuli. Dakle, OH deo je anjon hidroksida. **CBH1** + -OH, svakako, prolaze kroz reakciju prenosa protona 3.16. Takva situacija je posledica reakcije prenosa elektrona 3.15. Kako je ova reakcija reverzibilna, CBH1 se može ponašati ili kao anjon (reakcije 3.17) ili kao radikal (reakcije 3.16, 3.20 i 3.21). Reakcija (3.20) odvija se po HAA mehanizmu preko tripletnog prelaznog stanja (Slika P27). Promena spinskog stanja dovodi do formiranja mnogo stabilnijeg singletnog molekula CB. Ipak, obzirom da je formiranje diradikala najsporija reakcija (Tabele 3.19. i 3.20.) količina **CB** u reakcionoj smeši je veoma mala. U RRC reakcijama (3.21) reaktanti CBH1[•] i [•]OH formiraju triplet, dok su odgovarajući proizvodi singleti. Ove reakcije se odvijaju na dve površine potencijalne energije i mogu se objasniti fenomenom reaktivnosti u dva stanja (Two-state reaktivity) [154,155], koji je već primenjen za rasvetljavanje antiradikalske aktivnosti nekih antioksidanata [156,157]. Zavisnost ukupne energije od rastojanja HO-----N2 u singletnom i tripletnom stanju je ilustrovana slikom 3.17. Očigledno je da energija singletnog stanja kontinuirano opada od reaktanata do proizvoda. U tripletnom stanju, konverzija reaktanata u proizvode se odvija preko prelaznog stanja (Slika P27). Reaktanti su stabilniji u tripletnom stanju, ali su proizvodi znatno stabilniji u singletnom stanju. Dakle, kada su CBH1[•] i •OH dovoljno udaljeni, oni su dubleti. Oni se približavaju jedan drugom i dostižu tačku preseka spina (Spin Crossing Point - SCP) na udaljenosti HO-----N2 od 2,195 Å. Ovde se odvija inverzija spina jer su izuzetno slične singletne i tripletne strukture skoro degenerisane (slika P31). Shodno tome, reaktanti ne prolaze kroz energetski zahtevno tripletno prelazno stanje, već se spontano transformišu u mnogo stabilnije singletne proizvode. Na osnovu ovih podataka, može se smatrati da se reakcija između CBH1. i 'OH odigrava brzinom jednakom difuziji. Vredi naglasiti da su pokušaji da se simulira HAA reakcija koristeći istu metodologiju bili neuspešni.

Slika 3.17. Energetski profil za RRC reakciju **CBH1**[•] i •OH u N2 poziciji u singletnom i tripletnom stanju (plave i zelene linije). SCP označava tačku preseka spina, RC za reakcioni kompleks i TS za prelazno stanje

Rezultati predstavljeni u tabelama 3.19. i 3.20. pokazuju da su neke reakcije ili kontrolisane difuzijom ili su okarakterisane konstantama brzine čije su vrednosti bliske difuziji. Spontani mehanizmi su SPLET (neutralni oblik i anjon), SET–PT (anjon) i RRC (radikal). Kinetičko ispitivanje takođe naglašava centralnu ulogu anjona u antiradikalskoj aktivnosti CBH1. Pored učešća u SPLET i SET-PT mehanizmima, anjon obezbeđuje formiranje CBH1[•] koji prolazi kroz RRC mehanizam gde se gradi jedinjenje CBH1-OH (šema 3.1.). Da bi se dokazalo da je glavni finalni proizvod antiradikalske aktivnosti CBH1 jedinjenje CBH1-OH upoređeni su UV-Vis spektri pre i posle EPR eksperimenta na pH = 8,4, odnosno pre i posle Fentonove reakcije (slika P32). Postoje dve evidentne promene u spektrima: apsorpcija anjona se smanjuje u intervalu talasnih dužina od 450–330 nm (anjon se troši tokom Fentonove reakcije), dok se nova intenzivna apsorpciona traka pojavljuje na 274 nm (formira se novo jedinjenje). Da bi se proverilo da li je ovo novo jedinjenje **CBH1–OH**, simuliran je njegov UV-Vis spektar i skalirane su predviđene energije apsorbancije sa već utvrđenim faktorom koji je iznosio 0,915. Dve superponirane krive su prikazane na slici 3.18. CBH1-OH pokazuje intenzivnu traku na 282 nm. Na osnovu ovih talasnih dužina, razumno je pripisati novu apsorpcionu traku u eksperimentalnom spektru formiranju CBH1-OH. Ovaj podatak je snažna podrška predloženom mehanizmu antiradikalske aktivnosti CBH1.

Slika 3.18. Eksperimentalni UV–Vis spektar CBH1 nakon Fentonove reakcije (ljubičasta linija) i simulirani UV–Vis spektar CBH1–OH (plava linija)

Na kraju, predstavljen je kratak opis ponašanja **CBH–N1**⁻. Prvo je ispitana ET reakcija:

$$CBH-N1^{-} + OH \rightleftharpoons CBH-N1^{-} + OH$$
(3.22)

Iako je ova reakcija endergona ($\Delta G = 30.7 \text{ kJ mol}^{-1}$), ispitivana je kinetički. Konstanta brzine $\stackrel{k}{\rightarrow} = 2.58 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$, dok je za povratnu reakciju $\stackrel{k}{\leftarrow} = 7.96 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$, što znači da je konstanta ravnoteže K = 3.2×10^{-3} , a koncentracija **CBH–N1**[•] je zanemarljiva. Ovo ukazuje da se ne odvijaju svi mehanizmi kontrolisani difuzijom: SPLET, SET–PT, HAA i RRC; uključujući SPLET–RRC što bi dovelo do stabilnog jedinjenja. **CBH–N1**⁻ će verovatno biti podvrgnut HAA i RAF mehanizmima. S obzirom da ovi mnogo sporiji putevi daju različite radikalske vrste, utvrđeno je da nisu relevantni za dalje razmatranje.

3.6.3. In vitro antioksidativna aktivnost novosintetisanih **CBH8** i **CBH9** – Redoks status

Već je istaknuto da, pored ozbiljnih negativnih efekata, umerena proizvodnja slobodnih radikala unutar ćelije može imati niz pozitivnih efekata na njenu reprodukciju i normalno funkcionisanje. Tačnije, proizvodnja male količine ovih hemijskih entiteta je neophodna za adekvatnu ćelijsku komunikaciju, imuni odgovor i oslobađanje organizma od stranih tela i mnoge druge metaboličke i unutarćelijske procese. S druge strane, poremećaji u ravnoteži proizvodnje radikalskih vrsta, koji rezultiraju oksidativnim stresom, mogu izazvati oštećenje ključnih komponenti ćelije. Poznato je da mnogi lekovi, posebno citostatici, mogu narušiti redoks status ćelija kancera i izazvati njihovu kontrolisanu ćelijsku smrt – apoptozu. Stoga je obećavajuća strategija u razvoju potencijalnih lekova usmerena na ciljanu promenu redoks statusa kako bi se indukovao oksidativni stres u tkivu kancera. Sva ispitivanja u okviru ove

doktorske disertacije bile su usmerene na određivanje antioksidativnog kapaciteta ispitivanih jedinjenja prema slobodnim radikalima. Ipak, postavlja se pitanje kako će ova testirana jedinjenja uticati na redoks status u određenoj ćelijskoj liniji. Zbog toga su jedinjenja sa najboljim antioksidativnim svojstvima **CBH8** i **CBH9**, čija je aktivnost procenjena eksperimentalnim i računarskim kvantnomehaničkim metodama, podvrgnuta ispitivanju njihovog uticaja na redoks status ćelijskih linija raka debelog creva HCT–116, mereno prema tri standardna parametra: koncentraciji O₂⁻⁻, glutation (GSH) i malondialdehid (MDA).

Bitno je naglasiti da su ova jedinjenja pokazala i umeren citotoksični efekat na ćelijama raka debelog creva na kojima je ispitivan i redoks status. Nakon 24 h, jedinjenje **CBH8** pokazalo je IC₅₀ vrednosti od oko 102,74 μ M, dok je nakon 72 h ova vrednost iznosila 45,84 μ M. Sa druge strane, jedinjenje **CBH9** pokazuje nešto veću aktivnost sa IC₅₀ vrednosti od oko 92,91 μ M nakon 24h i 42,89 μ M nakon 72h. Vrednosti za *cis*-platinu pri istim uslovima iznose oko 22,41 μ M nakon 24h i 12,29 μ M nakon 72h [69-72].

3.6.3.2. Merenje koncentracije superoksid radikal-anjona (O_2^{-})

Koncentracija superoksid radikal-anjona je važan parametar u regulaciji oksidativne ravnoteže u živim organizmima, jer često podstiče preveliku proizvodnja hidroksi radikala, čime narušava redoks status u ćelijama. Da bi se ispitao uticaj prisustva **CBH1–CBH9** na koncentraciju ove hemijske vrste u ćeliji, jedinjenja su podvrgnuta NBT testu. Rezultati merenja ovog parametra prikazani su na sledećem dijagramu:

Kao što se može videti sa slike 3.19., pri niskim koncentracijama ispitivanih jedinjenja smanjuje se koncentracija O²^{•-}, dok pri većim koncentracijama ispitivanih jedinjenja dolazi do povećanja koncentracije O²^{•-}, pogotovu u slučaju **CBH7**, dok niske koncentracije **CBH8** ne utiču značajno na koncentraciju O²^{•-}. Ovi rezultati su u dobroj korelaciji sa citotoksičnom aktivnošću ispitivanih jedinjenja.

3.6.3.3. Merenje koncentracije malonaldehida (MDA)

Određivanje koncentracije MDA u prisustvu ispitivanih jedinjenja postignuto je pomoću TBARS testa. Rezultati su prikazani na slici 3.20.

Povećana koncentracija MDA ukazuje na lipidna oštećenja usled OS–a. Kao što se može videti sa slike 3.20., koncentracija MDA se ne povećava značajno sa povećanjem koncentracije ispitivanih jedinjenja, što indicira protektivnu ulogu prema lipidnim strukturama unutar ćelije.

Slika 3.20. Uticaj ispitivanih jedinjenja CBH7 (narandžasta boja) i CBH8 (crvena boja) na redoks status HCT–116 ćelijske linije nakon 24 h: koncentracija MDA izražena u nmol/mL po broju živih ćelija. Prikazani podaci su srednje vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na netretirane ćelije)

3.6.3.4. Merenje koncentracije glutationa (GSH)

Pored MDA i O²^{•-}, bitan parametar za određivanje redoks statusa jeste i određivanje koncentracije GSH. Ovaj parametar ispitivan je pomoću Elmanovog testa i rezultati su prikazani na slici 3.21. Rezultati ukazuju da pri niskim koncentracijama ispitivana jedinjenja ne utiču na promenu koncentracije GSH, dok pri višim koncentracijama raste i aktivnost, što je u korelaciji sa rezultatima dobijenim za superoksid radikal-anjon.

Slika 3.21. Uticaj ispitivanih jedinjenja CBH7 (narandžasta boja) i CBH8 (crvena boja) na redoks status HCT–116 ćelijske linije nakon 24 h: koncentracija GSH izražena u nmol/ml po broju živih ćelija. Prikazani podaci su srednje vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na netretirane ćelije)

3.7. Predviđeni toksikološki profil CBH1-CBH9i CBH1-OH

Kao što je već navedeno u uvodu ove disertacije, dobar toksikološki profil potencijalnih antioksidativnih agenasa je od krucijalne važnosti za primenu ovih jedinjenja u prehrambenoj, farmaceutskoj ili nekoj drugoj industrijskoj grani. Dobar toksikološki profil ovih jedinjenja ne treba ograničiti samo na same antioksidativne agense već i proizvode koji nastaju nakon reakcija sa slobodnim radikalima. Zbog toga će u ovom poglavlju pored **CBH1–CBH9** biti ispitan i toksikološki profil **CBH1–OH**.

Predviđanje toksikoloških osobina biće primarni zadatak ProToxII i ADMETlab 2.0 webservera. Da bi se bliže odredila ukupna toksičnost, ispitivana jedinjenja su podeljena u šest klasa toksičnosti prema srednjoj smrtonosnoj dozi (Lethal Dose 50% -LD50). Ove klase toksičnosti su definisane prema globalno usklađenom sistemu klasifikacije i obeležavanja hemikalija (GHS). Jedinjenja iz klase I (Class I) su veoma toksična i smrtonosna ako se progutaju (LD50 < 5mg kg-1). LD50 jedinjenja klase II (Class II) nalazi se u opsegu između 5 i 50 mg kg⁻¹, a ova jedinjenja se i dalje smatraju fatalnim ako se progutaju. Jedinjenja klase III (Class III) se smatraju toksičnim, ali bez fatalnih posledica, sa LD50 između 50 mg kg-1 i 300 mg kg-1. Jedinjenja klase IV (Class IV) su štetna ako se progutaju, sa LD⁵⁰ između 300 mg kg⁻¹ i 2000 mg kg⁻¹. Klasa V (*Class V*) se sastoji od jedinjenja koja mogu biti štetna ako se progutaju (2000 mg kg⁻¹ < LD₅0 ≤ 5000 mg kg⁻¹), dok klasa VI (Class VI) sadrži jedinjenja koja se smatraju netoksičnim, sa LD₅₀ > 5000 mg kg⁻¹. Prema rezultatima dobijenim pomoću ProToxII, moguće je zaključiti da većina ispitivanih novosintetisanih benzohidrazidskih derivata spada u klasu IV, osim CBH2 i CBH5 koji spadaju u klasu V (Tabela 3.21.). Interesantno je spomenuti da ova dva jedinjenja poseduju -OH grupu u položaju C2", koja je stabilizovana intramolekulskom vodoničnom vezom. Takođe, treba istaći da jedinjenja koja sadrže –OH grupe vezane za aromatični prsten pokazuju relativno nisku toksičnost, dok su se jedinjenja koja poseduju jednu ili više metoksi grupa pokazala kao značajno više toksična. Važno je napomenuti da sva ispitivana jedinjenja pokazuju manje LD50 vrednosti od kvercetina, a skoro sva (osim CBH4 i CBH9) pokazuju niže LD50 vrednosti od eskuletina. Kvercetin i eskuletin predstavljaju prirodne proizvode koji se mogu naći u mnogim biljkama, a široko se primenjuju u različitim industrijskim i prehrambenim proizvodima. Čak i varfarin, koji ima jako niske LD50 vrednosti se aktivno primenjuje u farmaceutskoj industriji i medicinskoj praksi kao relativno siguran antikoagulacioni agens. Bitno je i naglasiti odličan toksikološki profil jedinjenja CBH1-OH koje nastaje kao produkt inaktivacije radikala pomoću **CBH1**, a koje je manje toksično od polaznog jedinjenja.

Imajući u vidu da ispitivana jedinjenja pokazuju dobar toksikološki profil, moguće je razmatrati ih kao potencijalne antioksidativne agense u prehrambenoj, farmaceutskoj ili nekoj drugoj grani industrije, iako su *in vitro* i *in vivo* studije neophodne da se dobijeni *in silico* toksikološki profil potvrdi.

Jedinjenje	Predviđene LD50 vrednosti	Predviđena toksikološka klasa
CBH1	1460 mg kg ⁻¹	Klasa IV
CBH2	3000 mg kg ⁻¹	Klasa V
CBH3	1460 mg kg ⁻¹	Klasa IV
CBH4	721 mg kg ⁻¹	Klasa IV
CBH5	3000 mg kg ⁻¹	Klasa V
CBH6	2000 mg kg ⁻¹	Klasa IV
CBH7	2000 mg kg-1	Klasa IV
CBH8	2000 mg kg ⁻¹	Klasa IV
CBH9	600 mg kg ⁻¹	Klasa IV
CBH1–OH	3000 mg kg ⁻¹	Klasa V
Varfarin	2 mg kg ⁻¹	Klasa I
Eskuletin	945 mg kg ⁻¹	Klasa IV
Kvercetin	159 mg kg ⁻¹	Klasa III
Etanol	3450 mg kg ⁻¹	Klasa V

Tabela 3.21. Predviđena toksičnost ispitivanih jedinjenja **CBH1–CBH9** kao i **CBH1–OH.** Radi boljeg razumevanja dobijenih vrednosti LD50, kao standardi su korišćeni varfarin, eskuletin, kvercetin i etanol

3.8. Farmakokinetički parametri CBH1–CBH9

Pored toksičnosti postoji još serija različitih parametara koje mogu da opišu farmakokinetiku određenog jedinjenja, a koje se može ispitivati *in silico*. Da bi se ispitala apsorpcija, distribucija, metabolizam i ekskrecija određenog jedinjenja, još jednom su podaci dobijeni pomoću ADMETlab 2.0 servera, a za proveru i validaciju dobijenih parametara, korišćen je SwissADME webserver.

3.8.1. Drug-likeness i biodostupnost

Pre svega, da bi se ispitivana jedinjenja uopšte razmatrala za potencijalnu primenu u medicini ili farmaceutskoj industriji, bitan parametar koji moraju zadovoljiti naziva se *Drug–likeness* (DL). DL je koncept koji se koristi u otkrivanju i razvoju lekova za procenu verovatnoće da neko jedinjenje poseduje svojstva koja ga čine pogodnim za dalja istraživanja kao potencijalnog kandidata za lek. To uključuje procenu bioloških i fizičko–hemijskih karakteristika jedinjenja kako bi se utvrdio njegov potencijal da postane bezbedan i efikasan lek.

Kriterijumi DL–a su zasnovani na shvatanju da uspešni lekovi često dele određene zajedničke karakteristike. Ove karakteristike uključuju odgovarajuću veličinu i molekulsku težinu, prisustvo specifičnih funkcionalnih grupa, lipofilnost (sposobnost rastvaranja u mastima), hidrofilnost (sposobnost rastvaranja u vodi) i ukupnu hemijsku stabilnost. Veća je verovatnoća da će jedinjenja koja pokazuju svojstva slična lekovima imati povoljnu farmakokinetiku, koja utiče na njihovu apsorpciju, distribuciju, metabolizam i ekskreciju (ADME).
SwissADME							
Jedinjenja	Lipinski	Ghose	Veber	Egan	Muegge	Prekršaj	Bio– dostupnost
CBH1	Da	Da	Da	Da	Da	0	0,55
CBH2	Da	Da	Da	Da	Da	0	0,55
CBH3	Da	Da	Da	Da	Da	0	0,55
CBH4	Da	Da	Da	Da	Da	0	0,55
CBH5	Da	Da	Da	Da	Da	0	0,55
CBH6	Da	Da	Da	Da	Da	0	0,55
CBH7	Da	Da	Ne	Ne	Da	1	0,55
CBH8	Da	Da	Ne	Ne	Da	1	0,55
CBH9	Da	Da	Da	Da	Da	0	0,55
CBH1–OH	Da	Da	Da	Da	Da	0	0,55
			AI	OMET Lab2.()		
Jedinjenja	Lipinski	Pfeizer	GSK	Zlatni trougao	Sličnost s proiz	a prirodnim zvodima	Sintetska dostupnost (SD)*
CBH1	Da	Da	Da	Da		Da	2,203
CBH2	Da	Da	Da	Da		Da	2,339
CBH3	Da	Da	Da	Da		Da	2,304
CBH4	Da	Da	Da	Da		Da	2,379
CBH5	Da	Da	Da	Da		Da	2,495
CBH6	Da	Da	Da	Da		Da	2,445
CBH7	Da	Da	Da	Da		Da	2,647
CBH8	Da	Da	Da	Da		Da	2,642
CBH9	Da	Da	Ne	Da		Da	2,448
CBH1-OH	Da	Da	Da	Da		Da	2,692

*Jedinjenja sa SD<6 se smatraju "lakim" za sintezu

Razvijene su različite smernice i računarski alati za predviđanje sličnosti sa lekovima, kao što je "Lipinski pravilo pet" (*Lipinski Rule of Five*), koje navodi da je veća verovatnoća da će jedinjenje biti oralno aktivno ako ispunjava sledeće kriterijume: (1) molekulska težina manja od 500 daltona, (2) ne poseduje više od pet atom–donora vodonične veze, (3) najviše deset atom–akceptora vodonične veze i (4) izračunati koeficijent oktanol–voda (logP) manji od pet. Pored ovog, postoji još i niz pravila koja opisuju DL. Nekoliko njih primenjeno je i u ovoj disertaciji, u svrhu ispitivanja DL–a za **CBH1–CBH9**, kao i za **CBH1–OH**. Ispitivana jedinjenja ispunila skoro sve uslove da se mogu smatrati DL strukturama (Tabela 3.22.). Jedino odstupanje od pravila, koje su neka od ispitivanih jedinjenja pokazala, su kod Veberovog, Eganovog i GSK pravila, zbog prevelike polarne topološke površine (*Topological Polar Surface Area* – TPSA) i logaritamske vrednosti rastvorljivosti u vodi (*log of aqueous solubility* – **logS**). Ove osobine spadaju u fizičko–hemijske parametre biodostupnosti, o čemu će biti više reči u narednom poglavlju.

3.8.2. Fizičko-hemijski parametri biodostupnosti

Kao što je već napomenuto u prethodnim poglavljima ove disertacije, farmakološke i biološke osobine zavise od fizičko-hemijskih parametara samog jedinjenja. Kada su u pitanju fizičko-hemijski parametri koji se odnose na farmakokinetiku jedinjenja, najbitniji su sledeći: molekulska težina– (molecular weight – **MW** {100–600}), broj krutih veza (number of rigid bonds – **nRig** {0–30}), formalno naelektrisanje (formal charge – **fChar** {–4 do 4}), broj heteroatoma (number of heteroatoms – **nHet** {1–15}), broj atoma u najvećem prstenu (number of atoms in the biggest ring – **MaxRing** {0–18}), broj prstenova (number of rings – **nRing** {0–6}), broj rotabilnih veza (number of rotable bonds – **nRot** {0–11}), topološka polarna površina (topological polar surface area – **TPSA** {0–140}), broj atom–donora vodoničnih veza (number of hydrogen bond acceptors – **nHA** {0–12}), particioni koeficijent oktanol/voda (log of the octanol/water partition coefficient – **logP** {0–3}), particioni koeficijent na fiziološkoj vrednosti pH (logP at physiological pH – **logD** {1–3}).

		laiente it	empere p			encour top	101 / 011 111 1	Jeenigerig	.
Jedinjenje	MW	nHet	nRot	TPSA	nHD	nHA	logP	logD	logS
CBH1	322	6	4	84,50	2	6	2,28	2,66	-3,89
CBH2	338	7	4	104,73	3	7	2,65	2,73	-3,97
CBH3	338	7	4	104,73	3	7	1,96	2,33	-3,64
CBH4	368	8	5	113,96	3	8	1,97	2,27	-3,82
CBH5	354	8	4	124,96	4	8	2,24	2,21	-3,24
CBH6	354	8	4	124,96	4	8	1,64	2,03	-3,52
CBH7	370	9	4	145,19	5	9	1,86	1,60	-2,83
CBH8	370	9	4	145,19	5	9	1,32	1,31	-2,79
CBH9	412	9	7	112,19	2	9	2,13	2,41	-4,34
CBH1-OH	338	7	4	95,94	2	7	2,02	1,27	-2,95

Tabela 3.23. Fizičko-hemijski parametri biodostupnosti ispitivanih jedinjenja

Svi pomenuti parametri imaju svoje granične vrednosti, date u uglastim zagradama, a da bi jedinjenje imalo adekvatan farmakološki profil vrednosti parametara za konkretno jedinjenje moraju se naći između ovih graničnih vrednosti. Podaci o fizičko-hemijskim parametrima biodostupnosti ispitivanih jedinjenja dati su u Tabeli 3.23. Da bi se pojednostavio izgled tabele i da bi rezultati bili jasnije prikazani, parametri koji se ne razlikuju kod ispitivanih jedinjenja, kao što su fChar=0, nRing=3, nRig=21 i MaxRing=10 nisu prikazani u tabeli.

Kao što se može videti iz tabele, ispitivana jedinjenja su u prethodnom poglavlju pokazala da ne zadovoljavaju sva pravila DL–a. Kako se ovi parametri nalaze blizu graničnih vrednosti, smatraćemo da pomenuta jedinjenja treba dalje ispitivati i posmatrati kao DL strukture.

3.8.3. ADME analiza farmakokinetičkih parametara

ADME analiza predstavlja uži deo ADMET analize (isključujući toksičnost), u kojoj se ispituju farmakokinetički parametri koji opisuju ponašanje i "sudbinu" potencijalnog leka u organizmu. Najznačajniji parametri dobijeni ADME analizom jedinjenja ispitivanih u okviru ove disertacije predstavljeni su u sledećoj tabeli:

	-								
Indinionio	CI	BBB	LogKp	P-gp	CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4
jeungenge	GI	DDD	(cm/s)	supstrat	inhibitor	inhibitor	inhibitor	inhibitor	inhibitor
CBH1	>30%	Ne	-5,63	Ne	Da	Ne	Da	Ne	Ne
CBH2	>30%	Ne	-5,59	Ne	Da	Ne	Da	Ne	Ne
CBH3	>30%	Ne	-5,98	Ne	Da	Ne	Da	Ne	Ne
CBH4	>30%	Ne	-6,18	Da/Ne	Ne/Da	Ne	Da	Ne	Ne/Da
CBH5	>30%	Ne	-5,94	Ne	Da	Ne	Da	Ne	Ne/Da
CBH6	>30%	Ne	-6,33	Da/Ne	Da	Ne	Da/Ne	Ne	Da/Ne
CBH7	>30%	Ne	-6,29	Ne/Da	Da	Ne	Da/Ne	Ne	Ne
CBH8	>30%	Ne	-6,68	Ne/Da	Da	Ne	Da/Ne	Ne	Ne
CBH9	>30%	Ne	-6,24	Ne	Da	Ne/Da	Da	Ne	Ne/Da
CBH1-OF	I >30%	Ne	-5,94	Ne	Da/Ne	Ne	Da/Ne	Ne	Ne

Tabela 3.24. Predviđeni farmakokinetički parametri dobijeni pomoću ADMETlab 2.0 i validirani pomoću SwissADME servera (*iskošeno kada se razlikuje od ADMETlab* 2.0)

Kao što se može videti iz dobijenih podataka (Tabela 3.24), sva jedinjenja, uključujući i CBH1-OH pokazuju visok stepen gastro-intestinalne (GI) apsorpcije, a ni jedno od ispitivanih jedinjenja ne prolazi kroz krvno-moždanu barijeru. Takođe, ova jedinjenja pokazuju visok stepen apsorpcije preko kože (LogKp), gde najniži rezultat pokazuje jedinjenje CBH2, dok se najbolje pokazalo jedinjenje CBH8. U ostatku tabele moguće je naići na neslaganja u rezultatima dobijene pomoću različitih servera. Ova neslaganja potiču iz činjenice da SwissADME server ne razlikuje inhibitornu aktivnost od samog vezivanja supstrata, te stoga nekada može da predvidi da će neko jedinjenje biti inhibitor određenog enzima, iako je ono u stvari samo supstrat i ne može inhibirati ulogu datog enzima već se samo vezati za njega. Kao što se može videti, najveći broj ispitivanih jedinjenja nisu supstrati P-glikoproteina (Pgp). P-gp, poznat kao protein rezistencije na više lekova, je membranski transporter protein koji se nalazi u različitim tkivima, posebno u crevima, jetri , bubrežne i krvnomoždane barijere. On igra ključnu ulogu u dispoziciji lekova i farmakokinetici tako što "aktivno pumpa" širok spektar lekova i ksenobiotika iz ćelija, čime ograničava njihovu apsorpciju, distribuciju i akumulaciju u tkivima. Kada je lek P-gp supstrat, njegov efluks iz ćelija može dovesti do smanjene apsorpcije u gastrointestinalnom traktu, smanjene distribucije u specifičnim tkivima i poboljšane eliminacije preko bubrega i jetre. Ovaj mehanizam efluksa može značajno uticati na farmakokinetička svojstva lekova, utičući na njihovu bioraspoloživost, terapijsku efikasnost i potencijal za interakcije sa drugim lekovima. Na primer, u lečenju kancera, prekomerna ekspresija P-gp u tumorskim ćelijama može dovesti do smanjene intracelularne koncentracije leka i doprineti rezistenciji na lekove, ograničavajući efikasnost hemoterapije. S druge strane, u kontekstu krvno-moždane barijere, funkcija efluksa P-gp-a može sprečiti određene lekove da pređu u centralni nervni sistem, čime ometaju njihove potencijalne terapeutske efekte za neurodegenerativne poremećaje ili infekcije mozga. Razumevanje da li je lek supstrat P-gp je ključno tokom razvoja leka i kliničke upotrebe. Interakcije između lekova koje uključuju P-gp mogu promeniti farmakokinetiku istovremeno primenjenih lekova, a lekovi koji su supstrati P-gp mogu zahtevati prilagođavanje doze ili alternativne strategije lečenja kako bi se optimizovali njihovi terapijski rezultati. Pored toga, inhibicija ili indukcija P-gp takođe može uticati na farmakokinetiku drugih lekova koji se istovremeno primenjuju, naglašavajući važnost razmatranja uloge P-gp u terapiji lekovima i personalizovanoj medicini. Sposobnost inhibicije, odnosno vezivanja za P-gp je potrebno ispitati detaljnije u slučaju da se jedinjenja ispitivana u ovom doktoratu nađu kao kandidati za primenu u terapeutske svrhe.

Derivati kumarina stupaju u interakciju sa aktivnim mestima različitih proteina i enzima. Enzimi iz familije citohrom-P450 su neophodni za metabolizam mnogih lekova. Kao što je ranije pomenuto, ovi enzimi su često meta nekih hlorovanihmetilperoksi radikala. Iako se ova klasa sastoji od velikog broja različitih izoformi enzima P450, njih šest učestvuje u metabolizmu 90% poznatih lekova. Rezultati predstavljeni u tabeli 3.24. pokazuju da su skoro sva ispitivana jedinjenja potencijalni inhibitori CYP1A2, i CYP2C9. Iako ispitivana jedinjenja ne pokazuju inhibitornu aktivnost prema CYP2C19 i CYP2D6, važno je primetiti da jedinjenja CBH4-CBH6 i **CBH9** imaju potencijal da inhibiraju CYP3A4, koji je jedan od najvažnijih enzima P450. Ovi rezultati ukazuju da, ako se ova jedinjenja koriste kao potencijalni lekovi, njihova aktivnost će biti izraženija kod pacijenata koji nemaju CYP1A2, CYP2C9 i CYP3A4 u svom genotipu. Međutim, ispitivana jedinjenja mogu se koristiti kao inhibitori ovih enzima da bi se pojačao efekat nekih drugih lekova na koje utiče funkcija ovih enzima. Na primer, varfarin se veoma lako vezuje za CYP2C9, pa prisustvo ispitivanih jedinjenja može potencijalno da poveća koncentraciju varfarina u krvi, što može dovesti do pojačanog krvarenja pacijenta. Istovremeno, ako je pacijentu potrebna veća koncentracija varfarina u krvi, za prevenciju srčanog udara, na primer, isto jedinjenje može pokazati pozitivan efekat vezivanjem za CYP2C9 i omogućavanjem povećanja koncentracije varfarina. Ovi efekti zavise od razlike u energijama vezivanja između ispitivanog enzima i varfarina, odnosno CBH1-CBH9, što se može ispitati metodama molekulskog dokinga i dinamike ili spektroflourimetrijski i ovi efekti će se razlikovati od slučaja do slučaja.

3.9. Transport CBH1–CBH9 pomoću albumina

Albumin je esencijalni protein koji je prisutan u krvnoj plazmi i služi kao dominantni transportni protein u ljudskom telu. Njegova fiziološka funkcija je od najveće važnosti u održavanju osmotskog pritiska, regulaciji ravnoteže tečnosti i sistemskom transportu različitih supstanci, uključujući hormone, masne kiseline i farmaceutska jedinjenja. Sistem klasifikacije Sudlow, koji je kasnih 1970–ih osmislio dr David Sudlow, britanski farmakolog, uveliko je unapredio razumevanje albumina i njegovih vezujućih svojstava. Njegov sistem klasifikacije nudi sveobuhvatan okvir za kategorizaciju brojnih vezivnih mesta prisutnih na albuminu. Ovaj sistem klasifikacije je ključan u poboljšanju našeg razumevanja interakcija lek-protein i olakšavanju predviđanja vezanih za distribuciju i metabolizam lekova. Korišćenje ovog sistema pokazalo je značajan napredak u oblasti farmaceutskih istraživanja, razvoja lekova i kliničke prakse. On pruža dragocene uvide u ulogu albumina u procesima farmakokinetike i farmakodinamike lekova. Shodno tome, olakšava poboljšanje terapijskih pristupa i osigurava bezbednost lekova. Da bi smo ispitali transport ispitivanih kumarinskih derivata kroz organizam, u okviru ove disertacije korišćene su eksperimentalne i računarske tehnike kojima je određen način vezivanja ispitivanih jedinjenja za albumin.

3.9.1. Spektroflourimetijska metoda

Da bi se smanjila količina utrošenih hemikalija i sredstava u laboratoriji, i da bi se istraživanja u okviru ove disertacije podvrgla principima zelene i održive nauke, vezivanje ispitivanih jedinjenja za albumin istraživano je u eksperimentalnim uslovima samo na primeru **CBH9**, jedinjenja za koje je poznata kristalna struktura i koje je služilo kao model sistem na početku ove disertacije.

Da bi se odredio afinitet vezivanja CBH9 prema humanom serumskom albuminu (HSA), sprovedeno je spektrofluorimetrijsko ispitivanje vezivanja protein-ligand. Fluorescentni emisioni spektri HSA dobijeni su u prisustvu ispitivanog jedinjenja u različitim koncentracijama. Ova merenja su takođe sprovedena na tri različite temperature: 298 K (Slika 3.22.), 303 K (Slika P33) i 308 K (Slika P34), u rastvoru fosfatnog pufera (PBS) pri fiziološkom pH. HSA je pokazao istaknuti maksimum emisije na 331 nm nakon ekscitacije. Kao što je prikazano na slici 3.22., kako se koncentracija ispitivanog jedinjenja povećavala, intenzitet fluorescencije HSA se značajno smanjivala. Zanimljivo je da je maksimalna talasna dužina emisije HSA ostala suštinski nepromenjena. Ovo sugeriše da vezivanje ispitivanog jedinjenja nije uticalo na tercijarnu strukturu proteina i da vezivanje za aktivno mesto nije izazvalo nikakve promene polariteta u vezi sa amino-kiselinskim ostatkom TRP214. Odgovarajući grafikoni na slikama 3.22., P33 i P34 ilustruju odnos između (F0-F)/F i [Q], koji je neophodan za određivanje važnih parametara kao što su Štern-Folmerove (Stern–Volmer) konstante gašenja (Ksv), konstante brzine gašenja (kg), i broj mesta vezivanja (n). Pored toga, na slici P35 su prikazani grafikoni koji prikazuju zavisnost $\log[(F_0-F)/F]$ od $\log[Q]$, što je neophodno za procenu konstante vezivanja (K_b).

Slika 3.22. Spektri emisije fluorescencije HSA uz prisustvo različitih koncentracija ispitivanog jedinjenja (T = 296 K, pH = 7,4). Početna koncentracija je bila [HSA] = 2 μ M; Koncentracija ispitivanog jedinjenja bila je u opsegu od 0–5 μ M. Umetak: Grafička zavisnost (F0–F)/F od [Q] – Stern–Volmerovi dijagrami gašenja fluorescencije HSA sa ispitivanim jedinjenjem na 296 K

Svi dobijeni parametri su sumirani u tabeli 3.25. Izračunate vrednosti K_{sv} i k_q za kompleks HSA sa ispitivanim jedinjenjem ukazuju na dobru sklonost vezivanja HSA [145-149]. Vrednost k_q je veća od vrednosti maksimalne konstante brzine gašenja difuzionog sudara (konstante različitih gasova sa biopolimerom, 2×10^{10} M⁻¹s⁻¹), što sugeriše da se proces gašenja fluorescencije sa ispitivanim jedinjenjem kontroliše statičkim mehanizmom gašenja [158]. Negativna korelacija između vrednosti K_{sv} i temperature potvrđuje da je mehanizam gašenja interakcije između ispitivanih jedinjenja i HSA statičan i iniciran formiranjem kompleksa [159]. Izračunate vrednosti K_b ukazuju na snažnu interakciju između ispitivanog jedinjenja i HSA. Vrednost *n* se kreće od 0,9969 do 1,0693 što ukazuje da se jedinjenje vezuje za protein preko jednog aktivnog mesta. Vrednosti K_b se smanjuju kako temperatura raste, što ukazuje da se ligand manje efikasno vezuje za HSA na višim temperaturama. Ovi nalazi impliciraju da više temperature smanjuju stabilnost HSA kompleksa sa ispitivanim jedinjenjem.

Tabela 3.25. Štern–Folmerove konstante gašenja (K_{sv}), konstante brzine gašenja (k_q), konstante vezivanja (K_b) i broj mesta vezivanja (n) su određene za interakciju **CBH9** sa HSA

T (K)	Ksv (M ⁻¹)	$k_q (M^{-1} s^{-1})$	R ^{2a}	n	K _b (M ⁻¹)	R ^{2b}
296	2,73 × 10 ⁵	2,73 × 10 ¹³	0,9939	0,9969	$6,96 \times 10^4$	0,9903
303	2,30 × 10 ⁵	2,30 × 1013	0,9912	1,0693	$7,94 \times 10^{4}$	0,9903
310	2,28 × 10 ⁵	2,28 × 10 ¹³	0,9957	1,0578	$7,40 \times 10^{4}$	0,9906

Tabela 3.26. prikazuje izračunate termodinamičke parametre koji opisuju relativnu stabilnost HSA kompleksa sa ispitivanim jedinjenjem. Ros i Subramanian [159,160] su

predložili okvir za tumačenje uticaja predznaka i veličine termodinamičkih parametara (ΔH^0 i ΔS^0) na različite tipove interakcija uključenih u proces asocijacije proteina.

Tabela 3.26. Važni termodinamički parametri **HSA–CBH9** na različitim temperaturama (296, 303, 310 K)

(290, 503, 510 K)							
T (K)	ΔH^0 (kJ mol ⁻¹)	ΔS^0 (J mol ⁻¹ K ⁻¹)	ΔG (kJ mol ⁻¹)				
296			-27,63				
303	868	117	-28,42				
310			-28,90				

Negativne vrednosti ΔH^0 i ΔS^0 , prema njihovim hipotezama, ukazuju na prisustvo vodoničnih veza i van der Valsovih sila u formiranju interakcija. Elektrostatičke interakcije su označene negativnim ΔH^0 i pozitivnim ΔS^0 vrednostima, dok su hidrofobne interakcije označene pozitivnim vrednostima ΔH^0 i ΔS^0 , [159,160]. Pozitivne vrednosti ΔH^0 u tabeli 3.26. ukazuju na to da je vezivanje ispitivanog jedinjenja za HSA endotermni proces. Kada se kombinuje sa pozitivnim vrednostima ΔS^0 , ovo ukazuje da su hidrofobne interakcije uključene u interakcije ($\Delta H^0 > 0$ i $\Delta S^0 >$ 0). Negativne vrednosti ΔG ukazuju na spontanost vezivanja i formiranje kompleksa između HSA i ispitivanog jedinjenja.

3.9.2. In silico ispitivanje interakcija CBH9 i HSA

Prema rezultatima simulacija molekulskog dokinga predstavljenim u Tabeli 3.27., ispitivano jedinjenje može potencijalno da zauzme mesta vezivanja Sudlow I i Sudlow II unutar HSA, sa većim afinitetom prema Sudlow I (Sudlow I: $\Delta G_{\text{bind}} = -35,73 \text{ kJ mol}^-$ ¹, Sudlow II: $\Delta G_{\text{bind}} = -34,35 \text{ kJ mol}^{-1}$). Štaviše, u poređenju sa lekovima specifičnim za aktivno mesto, afinitet vezivanja ispitivanog jedinjenja bio je veoma sličan varfarinu (Sudlow I: $\Delta G_{\text{bind}} = -34,77 \text{ kJ mol}^{-1}$, Sudlow II: $\Delta G_{\text{bind}} = -34,22 \text{ kJ mol}^{-1}$), sa velikim brojem interakcija sa istim aminokiseliniskim ostacima. Na primer, kao što se može videti na slici 3.23., aminokiselinski ostaci kao što su TIR150, ALA291, ARG222, LEU260, itd. su uključeni u vezivanje i varfarina i ispitivanog jedinjenja za HSA. S druge strane, ibuprofen i ispitivano jedinjenje pokazuju sličan potencijal vezivanja za HSA unutar aktivnog mesta Sudlow II, ali pošto je energija vezivanja ispitivanih jedinjenja niža u Sudlow I, nego Sudlow II, strukture ligand-protein kompleksa sa ligandom pozicioniranim u Sudlow I su podvrgnuti simulacijama molekulske dinamike. Dodatni razlog biće činjenica da su eksperimentalno dobijeni rezultati pokazali samo jedno mesto vezivanja. Energije vezivanja za Sudlow I, dobijene simulacijom molekulskog dokinga, takođe su u dobroj korelaciji sa eksperimentalno dobijenim rezultatima kao i sa literaturnim podacima [160–162].

Slika 3.23. Interakcije ispitivanog jedinjenja (levo) i varfarina (desno) unutar Sudlow I aktivnog mesta HSA. Zelena boja predstavlja vodonične veze, ružičasta π -alkil dok ljubičasta predstavlja π -sigma interakcije

Prema RMSD vrednostima dobijenim simulacijama molekulske dinamike, strukturne promene izazvane vezivanjem ispitivanog jedinjenja su prilično slične promenama izazvanim vezivanjem varfarina (Slika 3.24.). I varfarin i **CBH9** pokazuju nešto niže RMSD vrednosti od HSA, što ukazuje na stabilizaciju sekundarne strukture HSA. Relativna stabilizacija HSA se takođe odražava u vrednostima Rg prikazanim na slici P36. Naime, vrednosti Rg za oba jedinjenja, varfarin i CBH9 otprilike prate Rg vrednosti HSA. Međutim, uočene su značajne razlike kada su ispitani RMSF dijagrami Utvrđeno je da vezivanje varfarina povećava (Slika P37). fleksibilnost aminokiselinskih ostataka HSA za približno 0,4 nm za sve aminokiselinske ostatke koji su označeni brojem <400. Fleksibilnost aminokiselinskih ostataka se još više povećava kada je CBH9 vezan za HSA, što je i očekivano zbog veće zapremine i većeg broja rotirajućih veza jedinjenja **CBH9** u poređenju sa varfarinom [160]. Ovo bi moglo da objasni eksperimentalne podatke koji sugerišu da se povećanjem temperature smanjuje stabilnost kompleksa HSA sa ispitivanim jedinjenjem. Kako temperatura raste, ionako visoka fleksibilnost aminokiselinskog ostatka se povećava, prividno smanjujući stabilnost kompleksa protein-ligand.

Slika 3.24. Dijagram koji predstavlja RMSD vrednosti za ispitivane sisteme u vremenskom okviru od 100 ns. Zelena boja predstavlja vrednosti koje opisuju vezivanje **CBH9**, crvena opisuje vezivanje varfarina, dok ljubičasta predstavlja HSA bez liganda u aktivnom mestu

3.9.3. Ispitivanje interakcija ostalih novosintetisanih derivata sa HSA

Kako se eksperimentalnim metodama (spektroflourimetrijski) pokazalo da se **CBH9** reverzibilno vezuje za HSA ne izazivajući promene u tercijernoj i sekundarnoj strukturi proteina, možemo pretpostaviti da će i ostali benzohidrazidski derivati 4– hidroksikumarina pokazati sličan afinitet prema HSA. Da bi ispitali vezivanje i transport **CBH1–CBH8** kao i **CBH1–OH** pomoću HSA, a istovremeno izbegli korišćenje hemikalija i zadržali rezultate u disertaciji u okviru principa zelene hemije i održive nauke, korišćene su isključivo *in silico* metode. Ove metode su u prethodnom poglavlju pokazale odličnu korelaciju sa eksperimentalnim rezultatima i mogu se smatrati adekvatnim za ispitivanje interakcija **CBH1–CBH8** i **CBH1–OH** sa HSA.

3.9.3.1. Molekulski doking

Kako bi se odredile energije vezivanja, kao i interakcije koje **CBH1–CBH8** kao i **CBH1–OH** formiraju sa HSA, prvenstveno su korišćene metode molekulskog dokinga. Rezultati dobijeni implementacijom ovih metoda dati su u tabeli 3.27.

Prema predstavljenim rezultatima može se zaključiti da jedinjenja **CBH1–CBH8** i **CBH1–OH** pokazuju sličan afinitet vezivanja za HSA, kako u odnosu na varfarin, tako i međusobno. Gibsove slobodne energije vezivanja kreću se između –33.01 kJ mol⁻¹ za **CBH4** do –37.86 kJ mol⁻¹. **CBH3**. Ovako male razlike u Gibsovim slobodnim energijama vezivanja indiciraju da u okviru istog aktivnog mesta ispitivana jedinjenja zauzimaju slične konformacione forme i interaguju sa istim amino–kiselinskim ostacima. Bitno je napomenuti da ovako niske Gibsove slobodne energije vezivanja indiciraju veoma dobar afinitet vezivanja.

Jedinjenje	$\Delta G_{ m bind}~(m kJ~mol^{-1})$	ki (nM)	-
CBH1	-36,19	456,58	
CBH2	-37,74	244,51	
CBH3	-37,87	232,44	
CBH4	-33,01	1650,00	
CBH5	-34,77	810,47	
CBH6	-34,14	1004,00	
CBH7	-37,45	275,18	
CBH8	-33,64	1280,00	
CBH9	-35,73	550,00	
CBH1–OH	-35,73	549,72	
Varfarin	-34,77	810,00	

Slika 3.25. Interakcije **CBH1–CBH9** i **CBH1–OH** unutar Sudlow I aktivnog mesta HSA. Zelena boja predstavlja vodonične veze, ružičasta π–alkil dok ljubičasta predstavlja π–sigma interakcije. Crvena boja prestavlja interakcije koje ometaju vezivanje za HSA, dok zlatne prestavljaju π–anjon interakcije

Da bi se objasnili ovako dobri afinitieti prema vezivanju za HSA, potrebno je uzeti u obzir interakcije **CBH1–CBH8** i **CBH1–OH** prikazane na slici 3.25..

Kao što se može videti sa slike 3.25., sva ispitivana jedinjenja, uključujući i **CBH1– OH** grade interakcije sa amino–kiselinskim ostacima u aktivnom mestu Sudlow I. Veoma veliki broj vodoničnih veza (>5) i π –alkil interakcija zaslužan je za visok afinitet vezivanja ispitivanih jedinjenja prema HSA.

Da bi se ispitala stabilnost ovih protein-ligand kompleksa u određenom vremenskom intervalu, kompleksi dobijeni dokingom su podvrgnuti simulacijama molekulske dinamike.

3.9.3.2. Molekulska dinamika

Kao što se može videti iz rezultata predstavljenih na slikama u prilogu (Slike P38-P40), jedinjenja CBH1-CBH8 pokazuju ponašanje veoma slično varfarinu i CBH9 kada je u pitanju vezivanje za HSA. Da bi se izbegla konfuzija na slikama, RMSD, RMSF i Rg vrednosti dobijene iz trajektorija CBH1–CBH8 nisu poređene sa samim HSA, već sa WF–HSA kompleksom. Kao što se može videti iz RMSD vrednosti, sva ispitivana jedinjenja, osim CBH8 pokazuju stabilizaciju HSA koja je neznatno veća od stabilizacije izazvane vezivanjem WF, što je i očekivano obzirom da pokazuju nešto niže energije vezivanja. Interesantno je da i jedinjenje **CBH9** pokazuje sličan trend, verovatno usled činjenice da se supstituenti kod CBH8 i CBH9 nalaze u istim položajima. U slučaju CBH1–CBH8, fluktuacije amino-kiselinskih ostataka nisu tako izražene kao u slučaju CBH9 što je posledica voluminoznosti supstituenata CBH9. Bitno je napomenuti da su ispitivanja u slučaju CBH1–CBH8 rađena samo na jednoj temperaturi, pa se ne može pratiti zavisnost stabilnosti kompleksa CBH1-CBH8 sa HSA od temperature. Zajednička osobina svim ispitivanim kompleksima je da se njihovim vezivanjem značajno povećava fleksibilnost LYS560 i amino-kiselinskih ostataka u njegovom okruženju. Kod jedinjenja CBH1, CBH5 i CBH6 veliku fleksibilnost pokazuje i GLU100. Kada su u pitanju Rg vrednosti i promene u tercijernoj strukturi kompleksa CBH1-CBH8 sa HSA, primetno je da sa porastom broja supstituenata menja se stabilnost kompleksa na ovom nivou, ali dolazi i do stabilizacije nakon 80 ns.

Slična situacija se dešava i kada se jedinjenje **CBH1–OH** vezuje za HSA. Kao što se može videti iz sledećih dijagrama, ovaj derivat, nastao kao produkt antioksidativne aktivnosti **CBH1** preko SPLET–RRC mehanizma postuliranog u okviru ove disertacije, ponaša se slično kao i ostali derivati iz serije benzohidrazidskih derivata 4–hidroksikumarina, što indicira da će dato jedinjenje biti lako transportovano kroz organizam i da će njegova farmakokinetička sudbina, uključujući metabolisanje i zadržavanje u organizmu biti povoljna po organizam.

Slika 3.26. Dijagram koji predstavlja RMSD vrednosti za ispitivane sisteme (WF–HSA i CBH1–OH–HSA) u vremenskom okviru od 100 ns. Crvenom bojom su prikazane vrednosti koje opisuju vezivanje varfarina, dok su zelenom predstavljene vrednosti za CBH1–OH

Slika 3.27. Dijagram koji predstavlja RMSF vrednosti za ispitivane sisteme (WF–HSA i CBH1–OH–HSA) u vremenskom okviru od 100 ns. Crvenom bojom su prikazane vrednosti koje opisuju vezivanje varfarina, dok su zelenom predstavljene vrednosti za CBH1–OH

Slika 3.28. Dijagram koji predstavlja Rg vrednosti za ispitivane sisteme (WF–HSA i CBH1–OH–HSA) u vremenskom okviru od 100 ns. Crvenom bojom su prikazane vrednosti koje opisuju vezivanje varfarina, dok su zelenom predstavljene vrednosti za CBH1–OH

4. ZAKLJUČAK

U okviru ove doktorske disertacije sintetisana je serija benzohidrazidskih derivata strukturne 4–hidroksikumarina. Na osnovu opsežne analize, sprovedene eksperimentalnim i teorijskim metodama, može se zaključiti da su strukture novosintetisanih derivata uspešno određene. Takođe, poređenjem geometrijskih parametara dobijenih pomoću rendgenske strukturne analize i parametara dobijenih pomoću tri funkcionala teorije funkcionala gustine (APFD, M062X i B3LYP-D3BJ) pokazano je da sva tri funkcionala odlično opisuju strukturu ove klase jedinjenja. Ipak, na osnovu koeficijenta korelacije i srednje apsolutne greške, B3LYP–D3BJ se pokazao kao najverodostojniji, kako za opis geometrijskih parametara, tako i za simulacije spektralnih podataka. Mala odstupanja između teorijskih i eksperimentalnih podataka mogu se pripisati kristalnom pakovanju molekula (kada su u pitanju IR i Xray analiza), kao i uticaju rastvarača i vodoničnih veza kojima rastvarač interaguje sa rastvorenom supstancom (NMR i UV-Vis), ali i aproksimacijama na kojima se zasnivaju ovi kvantno mehanički modeli. Ipak, vrednosti koeficijenata korelacije, koje se kreću između 0,95 i 0,99 svakako pokazuju da su pomenuta odstupanja zanemarljiva. Ispitivanja izvršena metodama molekulske dinamike pokazala su da su ova jedinjenja stabilna u vodenim rastvorima.

Kako su pomenuta jedinjenja sintetisana sa ciljem da se osnovnim molekulima poboljša antioksidativni kapacitet i obezbedi adekvatan farmakokinetički i toksikološki profil, ova jedinjenja podvrgnuta su testiranju ovih parametara. Rezultati *in vitro* ispitivanja antioksidativnog kapaciteta pokazuju da u seriji od devet jedinjenja, dobar antiradikalski kapacitet pokazuju tri, dok izvanredan antiradikalski kapacitet pokazuju dva derivata. Prema DPPH i ABTS testu umerenu aktivnost pokazalo je jedinjenje **CBH4**, odličnu aktivnost (sličnu troloksu – ABTS test) su pokazala jedinjenja **CBH6**, **CBH7**. Jedinjenja **CBH5** i **CBH8** su prema DPPH testu pokazali aktivnost nešto slabiju od standarda (NDGA i kvercetin), dok su prema ABTS⁺⁺ pokazali aktivnost bolju od troloksa koji se koristi kao standard.

Kako bi se odredio mehanizam delovanja ispitivanih jedinjenja i dobila sveobuhvatnija slika o njihovom antioksidativnom i antiradikalskom potencijalu, odrađena je serija in silico ispitivanja. Termodinamički parametri pokazali su da antioksidativni kapacitet određen in silico u potpunosti prati in vitro ispitivanja. Takođe, pokazalo se da od ispitivanih mehanizama (HAA, SET-PT i SPLET), najverovatniji mehanistički put u polarnoj sredini je SPLET mehanizam. U nepolarnom medijumu, usled nedostatka stabilizacije anjona molekulima rastvarača, HAA i SPLET mehanizmi se nalaze u kompeticiji. Takođe, termodinamički parametri pokazuju, da je u većini slučajeva, najpovoljniji položaj za formiranje radikala i anjona iz ispitivanih jedinjenja N2–H. Ovaj položaj se nalazi u blagoj kompeticiji kada je u pitanju nastanak radikala u polarnoj sredini kod jedinjenja koja sadrže veći broj hidroksilnih grupa. Da bi uzeli u obzir prirodu radikalske vrste koju treba inaktivirati, odredili smo termodinamičke parametre za inaktivaciju dvanaest različitih radikala podeljenih u tri grupe. Prvu grupu sačinjavali su hidroksi i alkoksi radikali, druga grupa se sastojala od alkil-peroksi i vinil-peroksi radikala, dok su trećoj grupi pripale hlorovane metil-peroksi radikalske vrste. Ispitivana jedinjenja su pokazala visok

antiradikalski potencijal, u korelaciji sa prethodno dobijenim rezultatima. Dominantan mehanistički put inaktivacije svih radikala bio je SPLET u skoro svim slučajevima, osim pri inaktivaciji hlorovanih metilperoksi radikala, gde su se SPLET i HAA našli u kompeticiji.

Međutim, ispitivanje mehanizama antiradikalske aktivnosti ne može se zaustaviti na termodinamičkim ispitivanjima, sa obzirom da su radikalske reakcije kinetički kontrolisane, te je stoga bilo neophodno ispitati kinetiku ovih reakcija. Takođe, kao što je naglašeno u uvodu ove doktorske disertacije, da bi jedinjenja bila primenjena kao potencijalni antioksidativni agensi ona sama, ali i njihovi metaboliti moraju imati adekvatne farmakokinetičke i toksikološke profile. Štaviše, da bi jedinjenje bilo dobar antioksidant, proizvodi reakcija sa slobodnim radikalima moraju biti manje toksični od početnog jedinjenja. Kako se reakcije koje prate HAA, SET-PT, SPLET i RAF mehanizme, ne završavaju neutralnim proizvodima, potrebno je razmatrati dalju sudbinu novodobijene radikalske vrste, jer iako je manje reaktivna od polaznog radikala, dobijeni radikali su još uvek veoma reaktivne čestice, odnosno ne postoje "stabilni radikali". U prethodnim istraživanjima naša grupa je uspostavila dva nova mehanizma, koji prate formiranje neutralnih vrsta iz novoformiranog radikala dobijenog iz molekula antioksidanta. Takođe, u poslednjem radu objavljenom u Chemical Engineering Journal-u pokazano je da antioksidativna aktivnost kod određenih jedinjenja zavisi u velikoj meri od pH vrednosti rastvora. Kako bi se ispitalo da li je to slučaj kod jedinjenja iz ove disertacije, CBH1 podvrgnuto je EPR ispitivanjima na pH=7,4 i pH=8,4. Na neutralnom pH, ispitivano jedinjenje je pokazalo veoma slab antiradikalski kapacitet (16%), dok je pri alkalnijim pH vrednostima antiradikalski kapacitet jedinjenja značajno porastao (56%). Određivanjem pKa vrednosti pokazalo se da je antiradikalski kapacitet jedinjenja uslovljen prisustvom anjonske vrste CBH1⁻. Ovakav trend je u korelaciji sa termodinamičkim parametrima koji su pokazali da je SPLET dominantan mehanistički put. Detaljnim kinetičkim ispitivanjima svih mogućih reakcija CBH1- pokazalo se da je najbrža reakcija formiranje radikalske vrste CBH1•. Ova reakcija, je jako brza ravnoteža reda veličine difuzije (10⁹), iako je blago endergona. Daljim ispitivanjem pokazalo se da CBH1[•] reaguje sa hidroksi radikalom u reakciji kuplovanja radikala, bez energetske barijere, formirajući tako CBH1-OH. Prisustvo ovog jedinjenja u rastvoru potvrđeno je poređenjem simuliranih UV-Vis spektara hipotetičkog proizvoda i eksperimentalnim UV spektrima reakcione smeše u toku vremena. To je dovelo do postuliranja novog mehanističkog puta antiradikalske aktivnosti pod nazivom SPLET-RRC.

Daljim ispitivanjima pokazalo se da je **CBH1–OH** manje toksičan od polaznog jedinjenja, čineći **CBH1** dobrim kandidatom za potencijalne primene u raznim granama industrije.

Da bi se ispitali farmakokinetički i toksikološki profili svih benzohidrazidskih derivata 4–hidroksikumarina, ova jedinjenja podvrgnuta su analizama pomoću ProToxII, ADMETlab 2.0 i SwissADME webservera. Parametri biodostupnosti i DL– a, pokazuju da ove strukture mogu biti korišćene kao potencijalni lekovi. Sva jedinjenja pokazala su, uključujući i **CBH1–OH**, visok stepen gastro–intestinalne (GI) apsorpcije, a ni jedno od ispitivanih jedinjenja ne prolazi kroz krvno-moždanu barijeru. Takođe, sva jedinjenja pokazuju visok stepen apsorpcije preko kože (LogKp), gde najniži stepen apsorpcije pokazuje jedinjenje **CBH2**, dok se najbolje pokazalo jedinjenje **CBH8**. Većina ispitivanih novosintetisanih derivata spada u klasu IV, osim **CBH2** i **CBH5** koji spadaju u klasu V toksičnosti (klasa I: veoma toksična jedinjenja klasa VI: netoksična jedinjenja). Zanimljivo je da ova jedinjenja sadrže –OH grupu na položaju C2", koja je stabilizovana unutar molekula putem vodonične veze. Takođe, jedinjenja koja takođe uključuju –OH grupe vezane za aromatični prsten, kao što je **CBH6** i **CBH8**, pokazuju relativno nisku toksičnost. S druge strane, jedinjenja koja sadrže jednu ili više metoksi grupa pokazala su se značajno toksičnijima. Važno je napomenuti da sva ispitivana jedinjenja imaju LD50 vrednosti niže od kvercetina, a gotovo sva, osim **CBH4** i **CBH9**, imaju niže LD50 vrednosti od eskuletina. Takođe, metode molekulskog dokinga i molekulske dinamike ukazuju na to da se ova ispitivana jedinjenja reverzibilno vezuju za HSA, što ih čini pogodnim za transport kroz organizam bez potrebe za specifičnim nosačima.

Kao jedinjenja sa najvećim antioksidativnim potencijalom, **CBH7** i **CBH8** podvrgnuti su ispitivanju na ćelijskim linijama. *In vitro* procenom redoks statusa na HCT-116 ispitivana jedinjenja pokazala su smanjenje koncentracije superoksid anjon radikala, ali i glutationa i malondialdehida pri delovanju niskih koncentracija ispitivanih jedinjenja. Pri većim koncentracijama, njihove prooksidative osobine rastu uzrokujući apoptozu. Ovo ukazuje da u zavisnosti od koncentracije jedinjenja **CBH7** i **CBH8** ispoljavaju i antioksidativnu i antitumorsku aktivnost, u zavisnosti od koncentracije u ćelijama.

Na kraju, jedinjenja ispitivana u okviru ovog doktorata pokazala su se kao dobri antioksidanti, sa adekvatnim farmakokinetičkim i toksikološkim profilima, sintetički su dostupna, poseduju određeni citotoksični potencijal i predstavljaju kandidate sa buduća *in vitro* i *in vivo* istraživanja i primenu u farmaceutskoj ili prehrambenoj industriji.

5. LITERATURA

- [1]. Tirzitis, G., & Bartosz, G. (2010). Determination of antiradical and antioxidant activity: basic principles and new insights. *Acta biochimica polonica*, 57(2). <u>https://doi.org/10.18388/abp.2010_2386</u>
- [2].Harman, D. (2009). Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. *Biogerontology*, 10(6), 773. https://doi.org/10.1007/s10522-009-9234-2
- [3].Hayes, J. D., Dinkova–Kostova, A. T., & Tew, K. D. (2020). Oxidative stress in cancer. *Cancer cell*, 38(2), 167–197. <u>https://doi.org/10.1016/j.ccell.2020.06.001</u>
- [4].Sies, H. (2020). Oxidative stress: Concept and some practical aspects. *Antioxidants*, 9(9), 852. <u>https://doi.org/10.3390/antiox9090852</u>
- [5]. Agati, G., Brunetti, C., Fini, A., Gori, A., Guidi, L., Landi, M., ... & Tattini, M. (2020). Are flavonoids effective antioxidants in plants? Twenty years of our investigation. *Antioxidants*, 9(11), 1098. <u>https://doi.org/10.3390/antiox9111098</u>
- [6]. Jamshidi–Kia, F., Wibowo, J. P., Elachouri, M., Masumi, R., Salehifard–Jouneghani, A., Abolhasanzadeh, Z., & Lorigooini, Z. (2020). Battle between plants as antioxidants with free radicals in human body. *Journal of Herbmed Pharmacology*, 9(3), 191–199. <u>https://doi.org/10.34172/jhp.2020.25</u>
- [7]. Giannakoula, A., Therios, I., & Chatzissavvidis, C. (2021). Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. *Plants*, 10(1), 155. <u>https://doi.org/10.3390/plants10010155</u>
- [8].Lu, W., Yao, J., Zhu, X., & Qi, Y. (2021). Nanomedicines: redefining traditional medicine. *Biomedicine & Pharmacotherapy*, 134, 111103. <u>https://doi.org/10.1016/j.biopha.2020.111103</u>
- [9]. Ozioma, E. O. J., & Chinwe, O. A. N. (2019). Herbal medicines in African traditional medicine. *Herbal medicine*, 10, 191–214.
- [10]. Sharifi-Rad, J., Cruz-Martins, N., López-Jornet, P., Lopez, E. P. F., Harun, N., Yeskaliyeva, B., ... & Cho, W. C. (2021). Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. *Oxidative Medicine and Cellular Longevity*, 2021. <u>https://doi.org/10.1155/2021/6492346</u>
- [11]. Küpeli Akkol, E., Genç, Y., Karpuz, B., Sobarzo–Sánchez, E., & Capasso, R. (2020). Coumarins and coumarin–related compounds in pharmacotherapy of cancer. *Cancers*, 12(7), 1959. <u>https://doi.org/10.3390/cancers12071959</u>
- [12]. Khalil, R. R., & Mustafa, Y. F. (2020). Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods. *Systematic Reviews in Pharmacy*, 11(2), 57–63. <u>http://dx.doi.org/10.5530/srp.2019.2.04</u>
- [13]. Gotoh, T., & Shikama, K. (1976). Generation of the superoxide radical during autoxidation of oxymyoglobin. *The Journal of Biochemistry*, *80*(2), 397–399.
- [14]. Kannan, K., & Jain, S. K. (2000). Oxidative stress and apoptosis. *Pathophysiology*, 7(3), 153–163. <u>https://doi.org/10.1016/S0928– 4680(00)00053–5</u>

- [15]. Gibson, B. W. (2005). The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. *The international journal of biochemistry* & cell biology, 37(5), 927–934. https://doi.org/10.1016/j.biocel.2004.11.013
- [16]. Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS–induced ROS release. *Physiological reviews*, 94(3), 909–950. <u>https://doi.org/10.1152/physrev.00026.2013</u>
- [17]. Lushchak, V. I. (2007). Free radical oxidation of proteins and its relationship with functional state of organisms. *Biochemistry* (*Moscow*), 72(8), 809–827. <u>https://doi.org/10.1134/S0006297907080020</u>
- [18]. Barzilai, A., & Yamamoto, K. I. (2004). DNA damage responses to oxidative stress. *DNA repair*, 3(8–9), 1109–1115. <u>https://doi.org/10.1016/j.dnarep.2004.03.002</u>
- [19]. Riley, P. A. (1994). Free radicals in biology: oxidative stress and the effects of ionizing radiation. *International journal of radiation biology*, 65(1), 27–33. <u>https://doi.org/10.1080/09553009414550041</u>
- [20]. Scarcello, E., Herpain, A., Tomatis, M., Turci, F., Jacques, P. J., & Lison, D. (2020). Hydroxyl radicals and oxidative stress: The dark side of Fe corrosion. *Colloids and Surfaces B: Biointerfaces*, 185, 110542. <u>https://doi.org/10.1016/j.colsurfb.2019.110542</u>
- [21]. Bach, R. D., & Dmitrenko, O. (2010). Transient inverted metastable iron hydroperoxides in fenton chemistry. A nonenzymatic model for cytochrome P450 hydroxylation. *The Journal of Organic Chemistry*, 75(11), 3705–3714. https://doi.org/10.1021/jo1004668
- [22]. Roginsky, V. A., & Stegmann, H. B. (1994). Ascorbyl radical as natural indicator of oxidative stress: quantitative regularities. *Free radical biology and medicine*, 17(2), 93–103. <u>https://doi.org/10.1016/0891–5849(94)90107–4</u>
- [23]. Gray, M. J., Wholey, W. Y., & Jakob, U. (2013). Bacterial responses to reactive chlorine species. *Annual review of microbiology*, 67, 141–160. https://doi.org/10.1146%2Fannurev-micro-102912-142520
- [24]. Zhang, Y. R., Chen, X. P., Zhang, J. Y., Yuan, Q., Miao, J. Y., & Zhao, B. X. (2014). A ratiometric fluorescent probe for sensing HOCl based on a coumarin–rhodamine dyad. *Chemical Communications*, 50(91), 14241–14244. https://doi.org/10.1039/C4CC05976]
- [25]. Winterbourn, C. C., & Kettle, A. J. (2013). Redox reactions and microbial killing in the neutrophil phagosome. *Antioxidants & redox signaling*, 18(6), 642–660. <u>https://doi.org/10.1089/ars.2012.4827</u>
- [26]. Carr, A. C., Vissers, M. C. M., Domigan, N. M., & Winterbourn, C. C. (1997). Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins. *Redox report*, 3(5–6), 263–271. <u>https://doi.org/10.1080/13510002.1997.11747122</u>
- [27]. Hill, T. J., Land, E. J., McGarvey, D. J., Schalch, W., Tinkler, J. H., & Truscott, T. G. (1995). Interactions between carotenoids and the CCl3O2. bul. Radical. *Journal*

of the American Chemical Society, 117(32), 8322–8326. <u>https://doi.org/10.1021/ja00137a004</u>

- [28]. Tiemann, K. (1992). Bioactive compounds from plants. Ciba Foundation Symposium 154, D. Chadwick, J. Marsh (Eds.), John Wiley & Sons Ltd., Chichester (1990), 248 pp.(ISBN 0–471926914).
- [29]. Criqui, M. H., & Ringel, B. L. (1994). Does diet or alcohol explain the French paradox?. *The Lancet*, 344(8939–8940), 1719–1723. <u>https://doi.org/10.1016/S0140– 6736(94)92883–5</u>
- [30]. Jacob, R. A. (1995). The integrated antioxidant system. *Nutrition research*, *15*(5), 755–766.
- [31]. Flieger, J., Flieger, W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. *Materials*, 14(15), 4135. https://doi.org/10.3390/ma14154135
- [32]. Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L. U., Łuczaj, W., ... & Žarković, N. (2010). Natural and synthetic antioxidants: an updated overview. *Free radical research*, 44(10), 1216–1262. https://doi.org/10.3109/10715762.2010.508495
- [33]. Vuolo, M. M., Lima, V. S., & Junior, M. R. M. (2019). Phenolic compounds: Structure, classification, and antioxidant power. In *Bioactive compounds* (pp. 33–50). Woodhead Publishing. <u>https://doi.org/10.1016/B978–0–12–814774–0.00002–5</u>
- [34]. Santana–Gálvez, J., & Jacobo–Velázquez, D. A. (2018). Classification of phenolic compounds. In *Phenolic Compounds in Food* (pp. 3–20). CRC press. ISBN 9781315120157
- [35]. Kamal-Eldin, A., & Appelqvist, L. Å. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. *Lipids*, *31*(7), 671–701. <u>https://doi.org/10.1007/BF02522884</u>
- [36]. Azzi, A. (2018). Many tocopherols, one vitamin E. *Molecular aspects of medicine*, 61, 92–103. <u>https://doi.org/10.1016/j.mam.2017.06.004</u>
- [37]. Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. *Journal of nutritional science*, *5*, e47. <u>https://doi.org/10.1017/jns.2016.41</u>
- [38]. Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. *Biotechnology reports*, 24, e00370. <u>https://doi.org/10.1016/j.btre.2019.e00370</u>
- [39]. Zaehner, R. C. (1954). The menace of mescalin. *Blackfriars*, 35(412/413), 310–323.
- [40]. Arndt, T. (2019). Mescalin. In *Lexikon der Medizinischen Laboratoriumsdiagnostik* (pp. 1607–1608). Berlin, Heidelberg: Springer Berlin Heidelberg.
- [41]. Demisch, L., Kaczmarczyk, P., & Seiler, N. (1978). 3, 4, 5–Trimethoxybenzoic acid, a new mescaline metabolite in humans. *Drug Metabolism and Disposition*, 6(5), 507–509.

- [42]. Russell, K. M., Molan, P. C., Wilkins, A. L., & Holland, P. T. (1990). Identification of some antibacterial constituents of New Zealand manuka honey. *Journal of agricultural and food chemistry*, 38(1), 10–13.
- [43]. Bisignano, G., Sanogo, R., Marino, A., Aquino, R., 'angelo, V. D., Germanò, M. P., ... & Pizza, C. (2000). Antimicrobial activity of Mitracarpus scaber extract and isolated constituents. *Letters in applied microbiology*, 30(2), 105–108. <u>https://doi.org/10.1046/j.1472–765x.2000.00692.x</u>
- [44]. Kakkar, S., & Bais, S. (2014). A review on protocatechuic acid and its pharmacological potential. *International Scholarly Research Notices*, 2014. http://dx.doi.org/10.1155/2014/952943
- [45]. Okabe, N., & Kyoyama, H. (2001). 2, 3–Dihydroxybenzoic acid. Acta Crystallographica Section E: Structure Reports Online, 57(12), o1224–o1226. <u>https://doi.org/10.1107/S1600536801018682</u>
- [46]. Sharma, N., Tiwari, N., Vyas, M., Khurana, N., Muthuraman, A., & Utreja, P. (2020). An overview of therapeutic effects of vanillic acid. *Plant Arch*, 20(2), 3053– 3059.
- [47]. Ingole, A., Kadam, M. P., Dalu, A. P., Kute, S. M., Mange, P. R., Theng, V. D., ... & Patil, P. A. (2021). A review of the pharmacological characteristics of vanillic acid. *Journal of Drug Delivery and Therapeutics*, 11(2–S), 200–204. https://doi.org/10.22270/jddt.v11i2–S.4823
- [48]. Olatunde, A., Mohammed, A., Ibrahim, M. A., Tajuddeen, N., & Shuaibu, M. N. (2022). Vanillin: A food additive with multiple biological activities. *European Journal of Medicinal Chemistry Reports*, 5, 100055. <u>https://doi.org/10.1016/j.ejmcr.2022.100055</u>
- [49]. Banerjee, G., & Chattopadhyay, P. (2019). Vanillin biotechnology: the perspectives and future. *Journal of the Science of Food and Agriculture*, 99(2), 499–506. <u>https://doi.org/10.1002/jsfa.9303</u>
- [50]. Bagautdinova, Z. Z., Omelyanchuk, N., Tyapkin, A. V., Kovrizhnykh, V. V., Lavrekha, V. V., & Zemlyanskaya, E. V. (2022). Salicylic acid in root growth and development. *International Journal of Molecular Sciences*, 23(4), 2228. <u>https://doi.org/10.3390/ijms23042228</u>
- [51]. Tomás-Barberán, F. A., & Clifford, M. N. (2000). Dietary hydroxybenzoic acid derivatives–nature, occurrence and dietary burden. *Journal of the Science of Food and Agriculture*, 80(7), 1024–1032.<u>https://doi.org/10.1002/(SICI)1097– 0010(20000515)80:7%3C1024::AID–JSFA567%3E3.0.CO;2–S</u>
- [52]. Manuja, R., Sachdeva, S., Jain, A., & Chaudhary, J. (2013). A comprehensive review on biological activities of p–hydroxy benzoic acid and its derivatives. *Int. J. Pharm. Sci. Rev. Res*, 22(2), 109–115.
- [53]. Chuyen, N. V., Kurata, T., Kato, H., & Fujimaki, M. (1982). Antimicrobial activity of Kumazasa (Sasa albo–marginata). Agricultural and Biological Chemistry, 46(4), 971–978.
- [54]. Kumar, P., Sati, S. C., Khulbe, K., Pant, P., Tripathi, A. N., & Sarvendra, K. (2022). Phytochemical constituents, antimicrobial and antioxidant activities of

Kumaun Himalayan Hoop Pine bark extract. *Natural Product Research*, *36*(4), 1095–1099. <u>https://doi.org/10.1080/14786419.2020.1851217</u>

- [55]. Economy, J., Storm, R. S., Matkovich, V. I., Cottis, S. G., & Nowak, B. E. (1976). Synthesis and structure of the p-hydroxybenzoic acid polymer. *Journal of Polymer Science: Polymer Chemistry Edition*, 14(9), 2207–2224. https://doi.org/10.1002/pol.1976.170140911
- [56]. Kontogiorgis, C., Detsi, A., & Hadjipavlou–Litina, D. (2012). Coumarin–based drugs: a patent review (2008–present). *Expert opinion on therapeutic patents*, 22(4), 437–454. <u>https://doi.org/10.1517/13543776.2012.678835</u>
- [57]. Talapatra, S. K., & Talapatra, B. (2015). *Chemistry of plant natural products* (p. 377). Berlin, Germany:: Springer.
- [58]. Matos, M. J., Santana, L., Uriarte, E., Abreu, O. A., Molina, E., & Yordi, E. G. (2015). Coumarins—An important class of phytochemicals. *Phytochemicals—isolation, characterisation and role in human health*, 25, 533–538.
- [59]. Molnar, M., & Čačić, M. (2011). Biološka aktivnost derivata kumarina– pregledni rad. *Croatian journal of food science and technology*, 3(2), 55–64.
- [60]. Venugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. *BioMed research international*, 2013. <u>https://doi.org/10.1155/2013/963248</u>
- [61]. Kumar, K. A., Renuka, N., Pavithra, G., & Kumar, G. V. (2015). Comprehensive review on coumarins: Molecules of potential chemical and pharmacological interest. *J. Chem. Pharm. Res*, 7(9), 67–81.
- [62]. Hung, W. L., Suh, J. H., & Wang, Y. (2017). Chemistry and health effects of furanocoumarins in grapefruit. *Journal of food and drug analysis*, 25(1), 71–83. <u>https://doi.org/10.1016/j.jfda.2016.11.008</u>
- [63]. Khandy, M. T., Sofronova, A. K., Gorpenchenko, T. Y., & Chirikova, N. K.
 (2022). Plant pyranocoumarins: Description, biosynthesis, application. *Plants*, *11*(22), 3135. <u>https://doi.org/10.3390/plants11223135</u>
- [64]. Najmanova, I., Dosedel, M., Hrdina, R., Anzenbacher, P., Filipsky, T., Riha, M., & Mladenka, P. (2015). Cardiovascular effects of coumarins besides their antioxidant activity. *Current topics in medicinal chemistry*, 15(9), 830–849.
- [65]. Kirsch, G., Abdelwahab, A. B., & Chaimbault, P. (2016). Natural and synthetic coumarins with effects on inflammation. *Molecules*, 21(10), 1322. <u>https://doi.org/10.3390/molecules21101322</u>
- [66]. Riveiro, M. E., De Kimpe, N., Moglioni, A., Vazquez, R., Monczor, F., Shayo, C., & Davio, C. (2010). Coumarins: old compounds with novel promising therapeutic perspectives. *Current medicinal chemistry*, 17(13), 1325–1338. https://doi.org/10.2174/092986710790936284
- [67]. Grover, J., & Jachak, S. M. (2015). Coumarins as privileged scaffold for antiinflammatory drug development. *RSC Advances*, 5(49), 38892–38905. <u>https://doi.org/10.1039/C5RA05643H</u>

- [68]. Al-Majedy, Y. K., Kadhum, A. A. H., Al-Amiery, A. A., & Mohamad, A. B. (2017). Coumarins: The Antimicrobial agents. *Systematic Reviews in Pharmacy*, 8(1). <u>https://doi.org/10.5530/srp.2017.1.11</u>
- [69]. Thakur, A., Singla, R., & Jaitak, V. (2015). Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. *European journal of medicinal chemistry*, 101, 476–495. <u>https://doi.org/10.1016/j.ejmech.2015.07.010</u>
- [70]. Krstic, A., Pavic, A., Avdovic, E., Markovic, Z., Stevanovic, M., & Petrovic, I. (2022). Coumarin–palladium (II) complex acts as a potent and non–toxic anticancer agent against pancreatic carcinoma cells. *Molecules*, 27(7), 2115. <u>https://doi.org/10.3390/molecules27072115</u>
- [71]. Avdović, E. H., Dimić, D. S., Marković, J. M. D., Vuković, N., Radulović, M. D., Živanović, M. N., ... & Marković, Z. S. (2019). Spectroscopic and theoretical investigation of the potential anti-tumor and anti-microbial agent, 3-(1-((2hydroxyphenyl) amino) ethylidene) chroman-2, 4-dione. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 206, 421-429. <u>https://doi.org/10.1155/2021/8849568</u>
- [72]. Avdović, E. H., Petrović, I. P., Stevanović, M. J., Saso, L., Dimitrić Marković, J. M., Filipović, N. D., ... & Marković, Z. S. (2021). Synthesis and Biological Screening 4–Hydroxycoumarin Derivatives of New and Their Palladium (II) Complexes. Oxidative medicine and cellular longevity, 2021, 1 - 18.https://doi.org/10.1155/2021/8849568
- [73]. Avdović, E. H., Antonijević, M., Simijonović, D., Roca, S., Topić, D. V., Grozdanić, N., ... & Marković, Z. (2022). Synthesis and Cytotoxicity Evaluation of Novel Coumarin–Palladium (II) Complexes against Human Cancer Cell Lines. *Pharmaceuticals*, 16(1), 49. <u>https://doi.org/10.3390/ph16010049</u>
- [74]. Holbrook, A. M., Pereira, J. A., Labiris, R., McDonald, H., Douketis, J. D., Crowther, M., & Wells, P. S. (2005). Systematic overview of warfarin and its drug and food interactions. *Archives of internal medicine*, 165(10), 1095–1106. <u>https://doi.org/10.1001/archinte.165.10.1095</u>
- [75]. Au, N., & Rettie, A. E. (2008). Pharmacogenomics of 4–hydroxycoumarin anticoagulants. *Drug metabolism reviews*, 40(2), 355–375. <u>https://doi.org/10.1080/03602530801952187</u>
- [76]. Hadler, M. R., & Shadbolt, R. S. (1975). Novel 4–hydroxycoumarin anticoagulants active against resistant rats. *Nature*, 253(5489), 275–277.
- [77]. Wilffert, B. (2017). Genotypering VKORC1 en CYP2C9 bij dosering van acenocoumarol en fenprocoumon. *Pharmaceutische Weekblad Wetenschappelijk Platform*, e1637.
- [78]. King, N., & Tran, M. H. (2015). Long–acting anticoagulant rodenticide (superwarfarin) poisoning: a review of its historical development, epidemiology, and clinical management. *Transfusion medicine reviews*, 29(4), 250–258. <u>https://doi.org/10.1016/j.tmrv.2015.06.002</u>

- [79]. Milenković, D. A., Dimić, D. S., Avdović, E. H., Amić, A. D., Marković, J. M. D., & Marković, Z. S. (2020). Advanced oxidation process of coumarins by hydroxyl radical: Towards the new mechanism leading to less toxic products. *Chemical Engineering Journal*, 395, 124971. <u>https://doi.org/10.1016/j.cej.2020.124971</u>
- [80]. Dimić, D. S., Milenković, D. A., Avdović, E. H., Nakarada, Đ. J., Marković, J. M. D., & Marković, Z. S. (2021). Advanced oxidation processes of coumarins by hydroperoxyl radical: An experimental and theoretical study, and ecotoxicology assessment. *Chemical Engineering Journal*, 424, 130331. https://doi.org/10.1016/j.cej.2021.130331
- [81]. Kurek–Górecka, A., Rzepecka–Stojko, A., Górecki, M., Stojko, J., Sosada, M., & Świerczek–Zięba, G. (2013). Structure and antioxidant activity of polyphenols derived from propolis. *Molecules*, 19(1), 78–101. https://doi.org/10.3390/molecules19010078
- [82]. Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. *Materials*, 14(8), 1984. https://doi.org/10.3390/ma14081984
- [83]. Letan, A. (1966). The relation of structure to antioxidant activity of quercetin and some of its derivatives I. Primary activity. *Journal of Food Science*, 31(4), 518– 523. <u>https://doi.org/10.1111/j.1365–2621.1966.tb01897.x</u>
- [84]. Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. *Saudi pharmaceutical journal*, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002
- [85]. Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of functional foods, 18, 757–781. <u>https://doi.org/10.1016/j.jff.2015.01.047</u>
- [86]. Boligon, A. A., Machado, M. M., & Athayde, M. L. (2014). Technical evaluation of antioxidant activity. *Med. Chem*, 4(7), 517–522. <u>https://doi.org/10.4172/2161– 0444.1000188</u>
- [87]. Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. *Songklanakarin J. sci. technol*, 26(2), 211–219.
- [88]. Dawidowicz, A. L., Wianowska, D., & Olszowy, M. (2012). On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). *Food chemistry*, 131(3), 1037–1043. <u>https://doi.org/10.1016/j.foodchem.2011.09.067</u>
- [89]. Hossain, M., Brunton, N., Barry–Ryan, C., Martin–Diana, A. B., & Wilkinson, M. (2008). Antioxidant activity of spice extracts and phenolics in comparison to synthetic antioxidants. <u>https://doi.org/10.21427/D7105D</u>
- [90]. Sethi, S., Joshi, A., Arora, B., Bhowmik, A., Sharma, R. R., & Kumar, P. (2020). Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. *European Food Research and Technology*, 246, 591–598. <u>https://doi.org/10.1007/s00217–020–03432–z</u>

- [91]. Auclair, C., & Voisin, E. (1985). Nitroblue tetrazolium reduction. *Handbook of methods for oxygen radical research*, 123.
- [92]. Baker, M. A., Cerniglia, G. J., & Zaman, A. (1990). Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. *Analytical biochemistry*, 190(2), 360–365. <u>https://doi.org/10.1016/0003–2697(90)90208–Q</u>
- [93]. Dimić, D., Milenković, D., Ilić, J., Šmit, B., Amić, A., Marković, Z., & Marković, J. D. (2018). Experimental and theoretical elucidation of structural and antioxidant properties of vanillylmandelic acid and its carboxylate anion. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 198, 61–70. <u>https://doi.org/10.1016/j.saa.2018.02.063</u>
- [94]. Antonijević, M. R., Simijonović, D. M., Avdović, E. H., Ćirić, A., Petrović, Z. D., Marković, J. D., ... & Marković, Z. S. (2021). Green one-pot synthesis of coumarinhydroxybenzohydrazide hybrids and their antioxidant potency. *Antioxidants*, 10(7), 1106. <u>https://doi.org/10.3390/antiox10071106</u>
- [95]. Antonijević, M. R., Avdović, E. H., Simijonović, D. M., Milanović, Ž. B., Amić, A. D., & Marković, Z. S. (2022). Radical scavenging activity and pharmacokinetic properties of coumarin–hydroxybenzohydrazide hybrids. *International Journal of Molecular Sciences*, 23(1), 490. <u>https://doi.org/10.3390/ijms23010490</u>
- [96]. Antonijević, M., Avdović, E., Simijonović, D., Milanović, Ž., Žižić, M., & Marković, Z. (2023). Investigation of novel radical scavenging mechanisms in the alkaline environment: Green, sustainable and environmentally friendly antioxidative agent (s). *Science of The Total Environment*, 169307. <u>https://doi.org/10.1016/j.scitotenv.2023.169307</u>
- [97]. Galano, A., & Alvarez-Idaboy, J. R. (2013). A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. *Journal of computational chemistry*, 34(28), 2430–2445. <u>https://doi.org/10.1002/jcc.23409</u>
- [98]. Evans, M. G., & Polanyi, M. (1935). Some applications of the transition state method to the calculation of reaction velocities, especially in solution. *Transactions of the Faraday Society*, *31*, 875–894.
- [99]. Truhlar, D. G., Hase, W. L., & Hynes, J. T. (1983). Current status of transition– state theory. *The Journal of Physical Chemistry*, *87*(15), 2664–2682.
- [100]. Fernández–Ramos, A., Miller, J. A., Klippenstein, S. J., & Truhlar, D. G. (2006). Modeling the kinetics of bimolecular reactions. *Chemical reviews*, 106(11), 4518– 4584. <u>https://doi.org/10.1021/cr050205w</u>
- [101]. Eckart, C. (1930). The penetration of a potential barrier by electrons. *Physical Review*, 35(11), 1303.
- [102]. Laidler, K. J. (1987). Chemical kinetics; ed by HarperCollins Publishers.
- [103]. Pollak, E. L. I., & Pechukas, P. (1978). Symmetry numbers, not statistical factors, should be used in absolute rate theory and in Broensted relations. *Journal of the American Chemical Society*, 100(10), 2984–2991.

- [104]. Marcus, R. A. (2020). Electron transfer reactions in chemistry. Theory and experiment. In *Protein electron transfer* (pp. 249–272). Garland Science.
- [105]. Marcus, R. A. (1993). Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angewandte Chemie International Edition in English, 32(8), 1111–1121. <u>https://doi.org/10.1002/anie.199311113</u>
- [106]. Marcus, R. A. (1964). Chemical and electrochemical electron-transfer theory. *Annual review of physical chemistry*, *15*(1), 155–196.
- [107]. Zhou, H. X., & Szabo, A. (1995). Microscopic formulation of Marcus' theory of electron transfer. *The Journal of chemical physics*, *103*(9), 3481–3494.
- [108]. Martínez, A., Hernández–Marin, E., & Galano, A. (2012). Xanthones as antioxidants: A theoretical study on the thermodynamics and kinetics of the single electron transfer mechanism. *Food & function*, 3(4), 442–450. <u>https://doi.org/10.1039/C2FO10229C</u>
- [109]. Nelsen, S. F., Blackstock, S. C., & Kim, Y. (1987). Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations. *Journal of the American Chemical Society*, 109(3), 677–682.
- [110]. Stokes, G. G. (1901). On the effect of the internal friction of fluids on the motion of pendulums. Part I Analytical investigation. Section III Solution of the equations in the case of an infinite cylinder oscillating in an unlimited mass of fluid, in a direction perpendicular to its axis. *Reprinted in Mathematical and Physical Papers*.
- [111]. Milanović, Ž., Dimić, D., Antonijević, M., Žižić, M., Milenković, D., Avdović, E., & Marković, Z. (2023). Influence of acid–base equilibria on the rate of the chemical reaction in the Advanced Oxidation Processes: Coumarin derivatives and hydroxyl radical. *Chemical Engineering Journal*, 453, 139648. https://doi.org/10.1016/j.cej.2022.139648
- [112]. Schwedhelm, E., Maas, R., Troost, R., & Böger, R. H. (2003). Clinical pharmacokinetics of antioxidants and their impact on systemic oxidative stress. *Clinical pharmacokinetics*, 42, 437–459. <u>https://doi.org/10.2165/00003088– 200342050–00003</u>
- [113]. Vora, J., Wu, Z., Montague, M., Penn, M., & Erow, K. (1999). Influence of dosing vehicles on the preclinical pharmacokinetics of phenolic antioxidants. *Research communications in molecular pathology and pharmacology*, 104(1), 93–106.
- [114]. Mertens–Talcott, S. U., Rios, J., Jilma–Stohlawetz, P., Pacheco–Palencia, L. A., Meibohm, B., Talcott, S. T., & Derendorf, H. (2008). Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin–rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. *Journal* of agricultural and food chemistry, 56(17), 7796–7802. <u>https://doi.org/10.1021/jf8007037</u>
- [115]. Ferreira, L. L., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. *Drug discovery today*, 24(5), 1157–1165. <u>https://doi.org/10.1016/j.drudis.2019.03.015</u>

- [116]. Norinder, U., & Bergström, C. A. (2006). Prediction of ADMET properties. *ChemMedChem: Chemistry Enabling Drug Discovery*, 1(9), 920–937. <u>https://doi.org/10.1002/cmdc.200600155</u>
- [117]. Vasić, J., Dimić, D., Antonijević, M., Avdović, E. H., Milenković, D., Nakarada, D., ... & Marković, Z. (2023). The Electronic Effects of 3-Methoxycarbonylcoumarin **Substituents** Spectral, Antioxidant, Protein Binding on and Properties. International Journal Molecular Sciences, 24(14), 11820. of https://doi.org/10.3390/ijms241411820
- [118]. Milanović, Ž., Antonijević, M., Avdović, E., Simić, V., Milošević, M., Dolićanin, Z., ... & Marković, Z. (2023). In silico evaluation of pharmacokinetic parameters, delivery, distribution and anticoagulative effects of new 4, 7–dihydroxycoumarin derivative. *Journal of Biomolecular Structure and Dynamics*, 1–16. <u>https://doi.org/10.1080/07391102.2023.2245071</u>
- [119]. Rigaku, O. D. (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. 2015.
- [120]. Blessing, R. H. (1995). Absorption correction: Multi–scan method. *Acta Cryst*. A, 51, 33.
- [121]. Sheldrick, G. (2015). XS. version 2013/1, Georg–August–Universität Göttingen, Germany, 2013; b) GM Sheldrick. Acta Crystallogr. Sect. A, 71, 3–8.
- [122]. Spek, A. L. (2009). Structure validation in chemical crystallography. *Acta Crystallographica Section D: Biological Crystallography*, 65(2), 148–155.
- [123]. Olex, A. (2009). Complete structure solution, refinement and analysis program: Ov dolomanov, lj bourhis, rj gildea, jak howard, h. Puschmann. *J. Appl. Crystallogr*, 42, 339–341.
- [124]. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. V. Ortiz, J. Cioslowski, D.J. Fox, *Gaussian 09*, (2009).
- [125]. Becke, A. D., & Johnson, E. R. (2005). A density-functional model of the dispersion interaction. *The Journal of chemical physics*, *123*(15), 154101..
- [126]. Beeke, A. D. (1993). Density–functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys*, *98*(7), 5648–6.
- [127]. Becke, A. D. (1988). Density–functional exchange–energy approximation with correct asymptotic behavior. *Physical review A*, *38*(6), 3098.

- [128]. Grimme, S., Ehrlich, S., & Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. *Journal of computational chemistry*, 32(7), 1456–1465.
- [129]. Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06–class functionals and 12 other functionals. *Theoretical chemistry accounts*, *120*, 215–241.
- [130]. Austin, A., Petersson, G. A., Frisch, M. J., Dobek, F. J., Scalmani, G., & Throssell, K. (2012). A density functional with spherical atom dispersion terms. *Journal of chemical theory and computation*, 8(12), 4989–5007.
- [131]. Dunning Jr, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. *The Journal of chemical physics*, 90(2), 1007–1023.
- [132]. Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *The Journal of Physical Chemistry B*, 113(18), 6378–6396.
- [133]. Zieliński, R., & Szymusiak, H. (2003). Application of DFT B3LYP/GIAO and B3LYP/CSGT methods for interpretation of NMR spectra of flavonoids. Pol. J. Food Nutr. Sci, 12, 157–162.
- [134]. Bohmann, J. A., Weinhold, F., & Farrar, T. C. (1997). Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge–including atomic orbital calculations. The Journal of chemical physics, 107(4), 1173–1184.
- [135]. Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., ... & Cao, D. (2021). ADMETIab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. <u>https://doi.org/10.1093/nar/gkab255</u>
- [136]. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug–likeness and medicinal chemistry friendliness of small molecules. *Scientific reports*, 7(1), 42717. <u>https://doi.org/10.1038/srep42717</u>
- [137]. Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox–II: a webserver for the prediction of toxicity of chemicals. *Nucleic acids research*, 46(W1), W257–W263. <u>https://doi.org/10.1093/nar/gky318</u>
- [138]. Lee, J., Cheng, X., Jo, S., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM–GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. *Biophysical journal*, 110(3), 641a. <u>https://doi.org/10.1021%2Facs.jctc.5b00935</u>
- [139]. Jovanović, J. D., Antonijević, M., Vojinović, R., Filipović, N. D., & Marković, Z. (2022). In silico study of inhibitory capacity of sacubitril/valsartan toward neprilysin and angiotensin receptor. *RSC advances*, 12(46), 29719–29726. <u>https://doi.org/10.1039/D2RA04226F</u>

- [140]. Jovanović, J. D., Antonijević, M., El-Emam, A. A., & Marković, Z. (2021). Comparative MD Study of Inhibitory Activity of Opaganib and Adamantane-Isothiourea Derivatives toward COVID-19 Main Protease Mpro. *ChemistrySelect*, 6(33), 8603–8610. https://doi.org/10.1002/slct.202101898
- [141]. Bandeira, P. T., Dalmolin, M. C., de Oliveira, M. M., Nunes, K. C., Garcia, F. P., Nakamura, C. V., ... & Piovan, L. (2019). Synthesis, antioxidant activity and cytotoxicity of N-functionalized organotellurides. *Bioorganic & medicinal chemistry*, 27(2), 410–415. <u>https://doi.org/10.1016/j.bmc.2018.12.017</u>
- [142]. Culcasi, M., Rockenbauer, A., Mercier, A., Clément, J. L., & Pietri, S. (2006). The line asymmetry of electron spin resonance spectra as a tool to determine the cis: trans ratio for spin-trapping adducts of chiral pyrrolines N-oxides: The mechanism of formation of hydroxyl radical adducts of EMPO, DEPMPO, and DIPPMPO in the ischemic-reperfused rat liver. Free Radical Biology and Medicine, 40(9), 1524–1538. <u>https://doi.org/10.1016/j.freeradbiomed.2005.12.029</u>
- [143]. Buege, J. A. (1978). Microsomal lipid peroxidation. *Methods in enzymology*, 52, 302–310.
- [144]. Cremer, D. T., & Pople, J. A. (1975). General definition of ring puckering coordinates. *Journal of the American Chemical Society*, 97(6), 1354–1358.
- [145]. Avdović, E. H., Milanović, Ž. B., Živanović, M. N., Šeklić, D. S., Radojević, I. D., Čomić, L. R., ... & Marković, Z. S. (2020). Synthesis, spectroscopic characterization, biological activity, DFT and molecular docking study of novel 4hydroxycoumarine derivatives and corresponding palladium (II) complexes. *Inorganica Chimica Acta*, 504, 119465.
- [146]. Milenković, D., Avdović, E., Dimić, D., Sudha, S., Ramarajan, D., Milanović, Ž., ... & Marković, Z. S. (2020). Vibrational and Hirshfeld surface analyses, quantum chemical calculations, and molecular docking studies of coumarin derivative 3–(1–m–toluidinoethylidene)–chromane–2, 4–dione and its corresponding palladium (II) complex. *Journal of Molecular Structure*, 1209, 127935. <u>https://doi.org/10.1016/j.molstruc.2020.127935</u>
- [147]. Nair, S. C., Pannikar, B., & Panikkar, K. R. (1991). Antitumour activity of saffron (Crocus sativus). *Cancer letters*, 57(2), 109-114. <u>https://doi.org/10.1016/0304-3835(91)90203-T</u>
- [148]. Milanović, Ž. B., Dimić, D. S., Avdović, E. H., Milenković, D. A., Marković, J. D., Klisurić, O. R., ... & Marković, Z. S. (2021). Synthesis and comprehensive spectroscopic (X–ray, NMR, FTIR, UV–Vis), quantum chemical and molecular docking investigation of 3–acetyl–4–hydroxy–2–oxo–2H–chromen–7–yl acetate. *Journal of Molecular Structure*, 1225, 129256. https://doi.org/10.1016/j.molstruc.2020.129256
- [149]. Milanović, Ž. B., Marković, Z. S., Dimić, D. S., Klisurić, O. R., Radojević, I. D., Šeklić, D. S., ... & Avdović, E. H. (2021). Synthesis, structural characterization, biological activity and molecular docking study of 4, 7–dihydroxycoumarin modified by aminophenol derivatives. *Comptes Rendus. Chimie*, 24(2), 215–232. <u>https://doi.org/10.5802/crchim.68</u>

- [150]. Recknagel, R. O. (1967). Carbon tetrachloride hepatotoxicity. *Pharmacological Reviews*, 19(2), 145–208.
- [151]. Ruch, R. J., Klaunig, J. E., Schultz, N. E., Askari, A. B., Lacher, D. A., Pereira, M. A., & Goldblatt, P. J. (1986). Mechanisms of chloroform and carbon tetrachloride toxicity in primary cultured mouse hepatocytes. *Environmental Health Perspectives*, 69, 301–305.
- [152]. Dunn, P. M. (2002). Sir James Young Simpson (1811–1870) and obstetric anaesthesia. Archives of Disease in Childhood–Fetal and Neonatal Edition, 86(3), F207– F209. <u>http://dx.doi.org/10.1136/fn.86.3.F207</u>
- [153]. Monhemius, A. J. (1977). Precipitation diagrams for metal hydroxides, sulphides, arsenates and phosphates.
- [154]. Shaik, S., Danovich, D., Fiedler, A., Schröder, D., & Schwarz, H. (1995). Twostate reactivity in organometallic gas-phase ion chemistry. *Helvetica chimica acta*, 78(6), 1393–1407.
- [155]. Kaur, N., Kumari, I., Gupta, S., & Goel, N. (2016). Spin inversion phenomenon and two-state reactivity mechanism for direct benzene hydroxylation by V4O10 cluster. *The Journal of Physical Chemistry A*, 120(48), 9588–9597. <u>https://doi.org/10.1021/acs.jpca.6b08666</u>
- [156]. Tošović, J., & Marković, S. (2019). Antioxidative activity of chlorogenic acid relative to trolox in aqueous solution–DFT study. *Food chemistry*, 278, 469–475. <u>https://doi.org/10.1016/j.foodchem.2018.11.070</u>
- [157]. Milanović, Ž., Tošović, J., Marković, S., & Marković, Z. (2020). Comparison of the scavenging capacities of phloroglucinol and 2, 4, 6–trihydroxypyridine towards HO radical: A computational study. *RSC advances*, 10(71), 43262–43272. <u>https://doi.org/10.1039/D0RA08377A</u>
- [158]. Johansson, J. S. (1997). Binding of the volatile anesthetic chloroform to albumin demonstrated using tryptophan fluorescence quenching. *Journal of Biological Chemistry*, 272(29), 17961–17965.
- [159]. Zhang, G., Que, Q., Pan, J., & Guo, J. (2008). Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. Journal of molecular structure, 881(1–3), 132–138. https://doi.org/10.1016/j.molstruc.2007.09.002
- [160]. Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11), 3096–3102.
- [161]. Sovrlić, M., Jelić, R., Antonijević, M., Marković, Z., Tomović, J., & Mrkalić, E. (2021). Influence of the caffeine on the interaction between haloperidol and human serum albumin: spectroscopic and molecular docking approach. Studia Universitatis Babes–Bolyai, Chemia, 66(4).
- [162]. Aghaee, E., Ghasemi, J. B., Manouchehri, F., & Balalaie, S. (2014). Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin. Journal of molecular modeling, 20, 1–13. <u>https://doi.org/10.1007/s00894–014–2446–7</u>

PRILOG A

Teorijske vrednosti Uglovi veza – CBH9 Eksperimentalne vrednosti B3LYP-D3BJ APFD M06-2X C9--01--C2 122,9 122,5 (3) 123,2 123,3 O1-C9-C10 121,7 (3) 122,0 122,2 122,3 117,5 O1-C2-C3 117,4 (3) 117,6 117,6 O1-C2-O2 114,9 (3) 115,3 115,6 115,4 C3-C2-O2 127,7 (3) 127,2 126,8 127,0 C2-C3-C4 120,4 (3) 120,7 120,7 120,7 C2-C3-C1 119,2 (3) 118,8 118,7 118,9 C4-C3-C1 120,3 (3) 120,5 120,5 120,3 C3-C4-C10 117,0 (3) 116,9 116,5 116,9 C3-C4-O4 123,6 (2) 123,6 124,0 123,7 C10-C4-O4 119,2 (3) 119,5 119,5 119,4 C4-C10-C5 122,1 (3) 121,3 121,1 121,3 C4-C10-C9 119,5 (3) 119,7 119,6 119,5 C5-C10-C9 118,1 (3) 119,0 119,3 119,2 C10-C5-C6 120,6 (4) 120,4 120,3 120,4 C5-C6-C7 119,5 (4) 119,7 119,6 119,6 C6-C7-C8 121,3 (4) 120,7 120,8 120,8 C7-C8-C9 118,2 (3) 119,0 119,0 119,0 C8-C9-C10 122,3 (3) 121,1 121,0 120,9 C8-C9-O1 116,0 (3) 116,9 116,8 116,7 C3-C1'-N1 117,3 (3) 117,5 117,8 117,1 C3-C1'-C2' 124,5 (3) 124,2 124,0 124,3 N1-C1'-C2 118,2 (3) 118,3 118,3 118,5 N1-N2-C7 115,4 (3) 119,2 118,7 119,1 N2-C7"-O7" 120,0 (3) 121,4 121,4 121,6 N2-C7"-C1' 117,6 (3) 114,5 114,5 114,2 O7"-C7"-C1' 124,1 124,1 122,3 (3) 124,1 C1"-C2"-C3" 119,3 (3) 119,5 119,0 119,2 C2"-C3"-C4" 120,2 120,1 120,1 114,9 (3) C3"-C4"-C5" 119,6 119,9 119,9 119,2 (3) C4"-C5"-C6" 120,2 120,1 120,1 120,1 (3) C5"-C6"- C1' 119,6 119,2 119,4 120,1 (3) C6"-C1"-C7" 116,5 116,7 (3) 116,8 116,4 O3"-C3"-C2" 124,3 124,9 124,9 (3) 124,5 O3"-C3"-C4" 115,0 120,3 (3) 115,5 115,4 C3"-O3"-C8" 117,9 (3) 118,3 117,8 118,1 O4"-C4"-C3" 119,0 (3) 119,5 119,2 119,2 O4"-C4"-C5" 121,2 120,9 121,4 (3) 120,5 C4"-O4"-C9" 117,1 (3) 115,5 114,0 114,5 O5"-C5"-C4" 115,0 115,6 (3) 115,5 115,4 O5"-C5"-C6" 124,9 124,3 (3) 124,3 124,5 C5"-O5"-C10" 117,9 117,4 (3) 118,1 117,5 MAE (°) 0,895 / 0,833 0,950 0,857 0,855 R / 0,865

Tabela P1. Eksperimentalne i teorijske vrednosti uglova veza (°) simulirane različitim teorijskim modelima

	Eksperimentalne	Teorijske vrednosti			
Diedarski (torzioni) uglovi CBH9	vrednosti	B3LYP-D3BJ	M06-2X	APFD	
O4-C4-C10-C9	-177,1 (3)	-179,6	-179,2	-179,2	
C3-C4-C10-C9	-0,6 (4)	1,0	1,0	1,0	
O4-C4-C10-C5	-2,4 (5)	0,6	0,6	0,5	
C3-C4-C10-C5	174,0 (3)	-179,3	-179,4	-179,3	
C1'-C3-C4-O4	9,3 (4)	-2,4	-2,1	-2,6	
C9-O1-C2-O2	-173,7 (3)	-178,8	-178,2	-178,7	
C9-O1-C2-C3	6,5 (4)	1,3	2,0	1,5	
C4-C3-C2-O2	166,6 (3)	179,6	178,7	179,4	
C1'-C3-C2-O2	-15,8 (5)	1,5	0,8	1,7	
C1'-C3-C4-C10	-167,0 (3)	177,5	177,9	177,1	
C2-C3-C4-O4	-173,1 (3)	179,6	-179,9	179,7	
C2-C3-C4-C10	10,7 (4)	-0,6	0,1	-0,5	
C2-O1-C9-C10	3,6 (4)	-0,9	-1,0	-1,0	
O1-C9-C8-C7	-178,9 (3)	-179,9	-179,8	-179,9	
C10-C9-C8-C7	1,3 (3)	0,1	0,1	0,1	
C5-C10-C9-O1	178,6 (3)	179,9	179,8	179,9	
C4-C10-C9-O1	-6,6 (5)	-0,3	-0,5	-0,3	
C5-C10-C9-C8	-1,6 (5)	-0,1	-0,1	-0,1	
C4-C10-C9-C8	173,2 (3)	179,7	179,6	179,6	
C9-C8-C7-C6	-0,6 (5)	0,1	0,1	0,1	
C4-C3-C2-O1	-13,6 (4)	-0,5	-1,5	-0,7	
C1'-C3-C2-O1	164,0 (3)	-178,6	-179,3	-178,4	
C9-C10-C5-C6	1,2 (5)	0,0	0,0	0,0	
C4-C10-C5-C6	-173,5 (3)	-179,8	-179,9	-179,7	
C10-C5-C6-C7	-0,6 (6)	0,1	0,1	0,1	
C8-C7-C6-C5	0,3 (6)	0,0	0,0	0,0	
C4-C3-C1'-C2'	170,1 (3)	-177,7	-178,5	-177,4	
C2-C3-C1'-C2'	-7,6 (4)	0,3	0,7	0,3	
N2- N1- C1'- C2'	-9,5 (4)	11,0	9,5	11,3	
N1- N2- C7"- C1"	-178,9 (2)	171,6	170,8	172,0	
N1-C1'-C3-C2	174,3 (3)	-179,3	179,7	-179,3	
N2- C7"- C1"- C6"	167,9 (3)	-152,3	-155,4	-155,1	
C7"- C1"- C2"- C3"	-177,8 (3)	179,6	-179,8	179,9	
C7"- C1"- C6"- C5"	177,7 (3)	179,3	178,9	179,2	
O7"- C7"- C1"- C2"	161,7 (3)	-154,9	-153,3	-152,9	
C1'' - C2'' - C3'' - C4''	-1,3 (4)	1,0	1,2	1,0	
C1"- C2"- C3"- O3"	178,6 (3)	-178,3	-178,2	-178,1	
C2"-C3"-C4"-C5"	3,5 (4)	-1,3	-2,1	-1,8	
C3"-C4"-C5"-C6"	-3,8 (4)	0,3	1,2	0,8	
C4"- C5"- C6"- C1"	1,8 (4)	1,0	0,6	0,8	
C2"-C3"-O3"-C8"	-12,3 (4)	-1,9	-1,8	-1,8	
C8"- O3"- C3"- C4"	167,6 (3)	178,9	178,8	179,0	
C3"-C4"-O4"-C9"	116,2 (3)	107,0	100,5	102,3	
C9"-O4"-C4"-C5"	-70,9 (4)	-75,6	-81,0	-79,9	
C4"-C5"-O5"-C10"	-168,7 (3)	-178,9	-178,3	-179,8	
C10"- O5"- C5"- C6"	10.5 (4)	1,2	1,8	0,9	

Tabela P2. Eksperimentalne i teorijske vrednosti diedarskih uglova (°)

Tabela P3. Eksperimentalni i izračunati (neskalirani i skalirani) položaji traka u vibracionom spektru i doprinos vibracionih modova (%) izražen kroz sveobuhvatnu PED (*Potential E-nergy Distribution*) analizu

		Eksp. vrednosti	В	3LYP-D3BJ/6-311++	-g(d,p)
Oblik	Tip vibracije	IR (cm ⁻¹)	Izračunate (neskalirane) (cm ⁻¹)	Izračunate (skalirane) (cm ⁻¹)	PED (%) – CBH9
92	H2–N istežuća	3440	3613	3494	vHN (99)
91	HC istežuća (B)		3230	3123	vHC(99)
90	HC istežuća (B)		3218	3112	vHC(99)
89	HC istežuća (A)	1	3207	3101	vHC(99)
88	HC istežuća (A)	3008	3204	3098	vHC(98)
87	HC istežuća (A)		3189	3084	vHC(97)
86	HC istežuća (C)		3174	3069	vHC(98)
85	HC istežuća (-CH3)		3165	3061	vHC(99)
84	HC istežuća (-OCH3, C10")		3143	3039	vHC(98)
83	HC istežuća (-OCH3, C8")	2072	3140	3036	vHC(98)
82	HC istežuća (-OCH3, C9")	2973	3137	3034	vHC(98)
81	HC istežuća (-CH3)		3131	3028	vHC(99)
80	HC istežuća (-OCH3, C8")		3092	2990	vCH(99)
	H1–N istežuća				
79	CNHO torziona	2926	3086	2984	$vNH(42) + \tau HCCC$
	NH Hbond istežuća				(17) + VINH(14)
78	HC istežuća (-OCH3, C8")		3079	2977	vCH(99)
	C2=O istežuća (C)				vC = O(81) + vCC(4)
77	CC istežuća (C)	1713	1776	1717	$+ \delta C C O(3)$
	CCO savijajuća (C)				+ 0000(0)
76	C7"=O istežuća	1694	1756	1698	vC = O(82) + vCC(4)
70	CC istežuća (C)	1074	1750	1070	VC 0(02) + VCC(4)
75	C4=O istežuća (C)	1609	1655	1600	vCO(83) + vCC(10)
	CC istežuća (A)				
74	CC istežuća (A)		1647	1593	vCC(33)
70	CNH savijajuća	1507	1(0)	1	δCNH(13) +
73	NC savijajuca	1586	1629	1575	vNC(10) + vCC(6)
70	CC istezuca (A)		1(0)	15(0	
72	CC istežuća (A, B)		1623	1569	VCC(49)
/1	OC istežuća (A, C)		1620	1367	VCC(39)
70	NC istožuća (A,C)		1608	1555	vOC(29) + vNC(15)
70	CC istežuća (A C)		1000	1000	+ vCC(13)
	OC istežuća (B)				
69	CC istežuća (B)		1539	1488	νOC (11) + νCC (19)
	CCH savijajuća (B)				+ + δCCH (6)
68	CCH savijajuća (A)		1510	1460	δCCH (36)
(7	HCH savijajuća (B)	1407	1504	1454	δHCH(55) +
67	HCCO torziona (w,t) (B)	1496	1504	1454	τHCCO (10)
((CCH savijajuća (-CH3)		1407	1440	
66	CC istežuća (A)		1497	1448	OCCH(27) + VCC(5)
65	HCH savijajuća (B)	1469	1/05	1446	δHCH(58) + τH-
05	HCOC torziona (w,t) (B)	1409	1495	1440	COC (11)
64	HCH savijajuća (-CH3, A)		1487	1438	δCCH (43) +
04	HCCO torziona (w,t) (A)		1407	1400	τHCCO (17)
63	HCH savijajuća (-CH3, B)		1485	1436	δНСН (14) + δОСН
	OCH savijajuća (B)	ļ	1100	1100	(16)
62	HCH savijajuća (-CH3)	ļ	1474	1425	δHCC (51)
61	HCH savijajuća (-CH3, B)		1464	1416	δ HCH (29) + δ CCH
	OCH savijajuca (-CH3, B)				(29)
60	NC istožuća		1438	1391	OCCH (27) + VNC
	INC ISLEZUCA				(7)
59	CCH savijajuća (-CH3, A) HCH savijajuća (-CH3, A)	1333	1405	1359	δCCH (48) + δHCH (35)
----	---	------	------	------	---
58	CC istežuća (C) OC istežuća (C)		1370	1325	νCC (10) + νOC (10)
57	CC istežuća (A)		1366	1321	vCC (59)
56	CC istežuća (B) OC istežuća (B)		1354	1309	νCC (48) + νOC (7)
55	CC istežuća (A ,C) NHO savijajuća (A, C)		1343	1299	νCC (28) + δNHO (6)
54	OC istežuća (C) CC istežuća (A,C) CCH savijajuća (A,C)	1236	1276	1234	νOC (20) + νCC (5) + δCCH (25)
53	OC istežuća (A) CC istežuća (A)		1266	1224	vOC (21) + vCC (23)
52	NH Hbond istežuća CN istežuća (A, C)		1242	1201	νNH (13) + νCN (7)
51	OCH savijajuća (B)	1128	1210	1170	δOCH (54)
50	OCH savijajuća (B)		1204	1164	δOCH (32) + δCCH
49	OCH savijajuća (B)		1200	1160	δOCH (41)
48	CCH savijajuća (A)		1182	1143	δCCH (43)
47	OCH savijajuća (B)		1171	1132	δOCH (82)
46	OCH savijajuća (B) HCCO torziona (w t) (-CH3 B)		1169	1130	$\nu CC (82) + \tau HCCO$
45	OC istežuća (B)		1163	1125	vOC (57)
44	CCH savijajuća (A)		1157	1119	δCCH (28)
43	CCH savijajuća (A) CCC savijajuća (A)	1033	1129	1092	δCCH (29) + δCCC (19)
42	CC istežuća (B) CCH savijajuća (B)		1101	1065	νCC (20) + δCCH (15)
41	CO istežuća (B)		1064	1029	νCO (72)
40	CCH savijajuća (-CH3) HCCN torziona (w,t) (B)		1056	1021	δCCH (57) + τHCCN (15)
39	CC istežuća (A) HCC savijajuća (A)		1053	1018	νOC (45) + δHCC (6)
38	OC istežuća (B)		1026	992	vOC (80)
37	CCH savijajuća (A, C) OC istežuća (B)		1019	985	δCCH (32) + νOC (14)
36	HCCH torziona (w,t) (A) CCCH torziona (w,t) (A)	966	996	963	τHCCH (55) + τCCCH (8)
35	HCCH torziona (w,t) (A, C) HCCC torziona (w,t) (A)		978	946	τHCCH (40) + τHCCC (28)
34	OC istežuća CN istežuća		968	936	νOC (17) + νCN (5)
33	OC istežuća (B)		941	910	vOC (71)
32	OCO savijajuća (A, C) CCC savijajuća (A, C)		914	884	δΟCO (19) + δCCC (12)
31	OHNC torziona (w,t) (B) CNHO torziona (w,t) (B)		896	866	τOHNC (16) + τCNHO (18)
30	HCCO torziona (w,t) (A) HCCH torziona (w,t) (A)		880	851	τHCCO (16) + τHCCH (24)
29	CC istežuća (B) COH savijajuća (C) OC istežuća (B)		875	846	vCC (28) + δCOH (7) + vOC (6)
28	HCCO torziona (w,t) (B) CCCH torziona (w,t) (B) HCCC torziona (w,t) (B)		873	844	τHCCO (12) + τCCCH (8) + τHCCC (12)
27	OCCH torziona (w,t) (A) HCCC torziona (w,t) (A) CCCH torziona (w,t) (A)		840	812	τOCCH (15) + τHCCC (23) + τCCCH (8)

26	OCCC torziona (w,t) (A) CCCC torziona (w,t) (A)	763	801	775	τOCCC (16) + τCCCC (8) +
	CCCO torziona (w,t) (A)				τCCCO (7)
	OCCO torziona (w,t) (B)			- 10	τΟССО (8) +
25	CCCC torziona (w,t) (B)		795	769	$\tau CCCC (8) + \delta COC$
	COC savijajuća (B)				(8)
	CO istežuća (C)				vCO(12) + vOC(9)
24	OC istežuća (C)		769	744	$+ vCC (6) + \delta CCC$
21	CC istežuća (B)		105	, 11	(4)
	CCC savijajuća (B)				(1)
23	CCCO torziona (A,B, C)		748	723	τCCCO (26) +
23	COCC torziona (C)		740	723	τCOCC (16)
22	CCN savijajuća (B)		719	695	δCCN (16)
21	CCCO torziona (w,t) (A)	670	700	677	τCCCO (10) +
21	CCCC torziona (w,t) (A)	670	700	077	τCCCC (10)
20	CCO savijajuća (A,C)		683	660	δCCO (24)
	CCCH torziona (w,t) (A)				τCCCH (13) +
19	CCCC torziona (w,t) (A)		612	592	τCCCC (5) +
	OCCO torziona (w,t) (A)				τOCCO (5)
18	CCCH torziona (w,t) (B)		599	579	τCCCH (13)
17	CCC savijajuća (A, C)		544	526	δCCC (29)
17	CCCC torziona (w,t) (A, C)		520	F14	τCCCC (16) +
16	HCCC torziona (w,t) (A, C)		532	514	τHCCC (5)
	CCNH torziona (w,t)				τCCNH (9) +
15	OCNH torziona (w,t)		495	4(0	τOCNH (9) +
15	HNNC torziona (w,t)		485	469	τHNNC (6) +
	HNNH torziona (w,t)				τHNNH (6)
14	HO H savijajuća		450	444	δCOH (11) + vHO
14	CCO savijajuća (A,C)		459	444	(10)
10	CCC savijajuća (A, B, C)			101	δССС (14) + δСОН
13	COH savijajuća (C)		446	431	(11)
10	CCCC torziona (A, C)		420	42.4	τCCCC (25) +
12	OCCC torziona (A, C)		438	424	τOCCC (4)
	R			0,978	

Tabela P4. Uglovi veza (°) CBH1-CBH8 simulirani	pomoću B3LYP-D3BJ/6-311++G(d,p)
---	---------------------------------

					-			
Uglovi veza	CBH1	CBH2	CBH3	CBH4	CBH5	CBH6	CBH7	CBH8
C901C2	123,20	123,23	123,20	123,20	123,22	123,20	123,22	123,20
O1-C9-C10	122,02	122,05	122,02	122,00	122,05	122,01	122,04	122,01
O1–C2–C3	117,56	117,50	117,50	117,51	117,50	117,51	117,51	117,51
O1–C2–O2	115,30	115,39	115,26	115,23	115,42	115,26	115,38	115,25
C3–C2–O2	127,13	127,11	127,13	127,26	127,08	127,23	127,11	127,24
C2-C3-C4	120,65	120,68	120,69	120,69	120,67	120,70	120,68	120,70
C2-C3-C1'	118,76	118,80	118,81	118,82	118,79	118,81	118,78	118,80
C4-C3-C1'	120,57	120,49	120,57	120,46	120,50	120,45	120,50	120,47
C3-C4-C10	116,86	116,91	116,93	116,94	116,90	116,94	116,91	116,93
C3-C4-O4	123,63	123,53	123,63	123,63	123,51	123,61	123,54	123,62
C10-C4-O4	119,51	119,56	119,46	119,43	119,58	119,45	119,55	119,45
C4-C10-C5	121,27	121,33	121,34	121,33	121,32	121,33	121,32	121,32
C4-C10-C9	119,70	119,62	119,62	119,62	119,63	119,63	119,63	119,64
C5-C10-C9	119,03	119,04	119,03	119,04	119,04	119,04	119,05	119,03
C10-C5-C6	120,42	120,40	120,42	120,42	120,40	120,43	120,40	120,43
C5-C6-C7	119,68	119,69	119,68	119,68	119,68	119,68	119,68	119,68
C6-C7-C8	120,74	120,75	120,73	120,72	120,75	120,73	120,71	120,73
C7-C8-C9	119,01	119,01	119,03	119,00	119,01	119,03	119,02	119,03
C8-C9-C10	121,11	121,11	121,10	121,10	121,11	121,09	121,10	121,10
C8C9O1	116,87	116,84	116,87	116,89	116,84	116,89	116,85	116,89
C3C1'N1	117,60	117,44	117,49	117,49	117,43	117,49	117,46	117,49
C3-C1'-C2'	124,09	124,25	124,22	124,24	124,27	124,23	124,25	124,25
N1-C1'-C2'	118,30	118,31	118,29	118,27	118,29	118,28	118,28	118,28
N1-N2-C7"	121,16	119,63	119,12	119,14	121,05	119,19	119,76	119,36
N2-C7"-O7"	121,64	119,66	121,21	121,08	119,81	121,21	119,53	121,39
N2-C7"-C1"	114,81	123,81	114,94	115,15	123,81	115,13	117,64	114,94
O7"–C7"–C1"	123,51	123,01	123,83	123,75	122,79	123,64	122,79	123,64
C1"-C2"-C3"	120,17	119,45	120,82	119,93	120,11	120,09	120,06	119,37
C2"-C3"-C4"	120,09	120,45	119,82	120,21	120,05	120,50	120,64	120,52
C3"-C4"-C5"	120,01	120,75	120,10	119,82	120,07	119,49	119,91	119,49
C4"-C5"-C6"	120,02	119,22	119,62	119,97	120,42	120,10	119,63	119,87
C5"–C6"– C1"	120,14	121,45	120,86	121,39	121,52	120,44	121,59	119,75
C6"-C1"-C7"	123,11	123,21	123,71	123,90	123,96	123,99	124,52	123,03
C1″-C2″-O2″	/	123,00	/	/	124,43	/	124,35	/
C3″–C2″–O2″	/	117,55	/	/	115,45	/	115,59	/
C2″-C3″-O3″	/	/	/	126,02	119,45	124,72	121,55	124,86
C4"-C3"-O3"	/	/	/	113,77	120,49	114,78	117,81	114,62
C3″-C4″-O4″	/	/	122,65	120,02	/	120,54	120,42	122,39
C5″-C4″-O4″	/	/	117,24	120,16	/	119,97	119,67	117,58
C4″-C5″-O5″	/	/	/	/	/	/	/	120,36
C6″-C5″-O5″	/	/	/	/	/	/	/	119,76

Tabela P5. Diedarski uglovi (°)	CBH1-CBH8 simulirani	pomoću B3LYP-D3BJ/6-311++G(d,p)

Diedarski uglovi	CBH1	CBH2	CBH3	CBH4	CBH5	CBH6	CBH7	CBH8
O4-C4-C10-C9	-179,25	-179,19	-179,07	-179,35	-179,44	-179,44	-179,36	-179,49
C3-C4-C10-C9	0,91	1,07	1,15	0,71	0,75	0,75	0,86	0,64
O4-C4-C10-C5	0,60	0,69	0,69	0,29	0,44	0,36	0,54	0,24
C3-C4-C10-C5	-179,25	-179,05	-179,08	-179,35	-179,37	-179,45	-179,24	-179,63
C1'-C3-C4-O4	-2,51	-2,79	-2,63	-1,88	-2,44	-2,46	-2,61	-2,13
C9-O1-C2-O2	-179,24	-179,04	-178,73	-178,59	-179,16	-179,02	-179,06	-178,81
C9-O1-C2-C3	0,80	1,03	1,38	1,45	0,84	0,99	0,93	1,18
C4-C3-C2-O2	-179,86	-179,86	-179,72	178,96	179,92	179,71	179,96	179,28
C1'-C3-C2-O2	1,87	2,11	1,74	0,91	1,85	1,81	1,95	1,35
C1'-C3-C4-C10	177,33	176,93	177,14	178,06	176,93	177,34	177,16	177,73
C2-C3-C4-O4	179,26	179,22	179,43	-179,89	177,36	179,66	179,42	179,97
C2-C3-C4-C10	-0,90	-1,06	-0,80	0,05	-0,68	-0,53	-0,82	-0,16
C2-O1-C9-C10	-0,82	-1,04	-1,07	-0,72	-0,79	-0,80	-0,92	-0,72
01-C9-C8-C7	179,96	179,99	-179,92	-179,91	179,99	179,98	-179,99	179,99
C10-C9-C8-C7	0,05	0,08	0,11	0,08	0,04	0,02	0,06	0,02
C5-C10-C9-O1	-179,93	-179,95	179,96	179,93	-179,93	-179,93	-179,94	-179,97
C4-C10-C9-O1	-0,09	-0,07	-0,27	-0,42	-0,05	-0,12	-0,04	-0,23
C5-C10-C9-C8	-0,02	-0,02	-0,02	-0,05	-0,02	0,02	-0,01	0,00
C4-C10-C9-C8	179,82	179,86	179,82	179,60	179,90	179,83	179,91	179,74
C9-C8-C7-C6	-0,03	-0,05	-0,07	-0,02	-0,05	-0,03	-0,06	-0,01
C4-C3-C2-O1	0,09	0,06	-0,40	-1,08	0,08	0,29	-0,04	0,71
C1'-C3-C2-O1	-178,17	-177,96	-178,38	-179,13	-178,15	-178,20	-178,04	-178,63
C9-C10-C5-C6	-0,02	-0,05	-0,03	-0,03	-0,07	-0,06	-0,08	-0,04
C4-C10-C5-C6	-179,86	-179,94	-179,80	-179,67	-179,95	-179,87	-179,98	-179,77
C10-C5-C6-C7	0,04	0,08	0,10	0,08	0,08	0,06	0,07	0,04
C8-C7-C6-C5	-0,01	-0,03	-0,06	-0,05	-0,59	-0,01	-0,01	-0,02
C4-C3-C1'-C2'	-178,16	-177,19	-177,30	-178,19	-177,71	-177,77	-177,49	-178,13
C2-C3-C1'-C2'	0,10	0,83	0,68	-0,14	0,36	0,14	0,52	-0,19
N2-N1-C1'-C2'	12,32	11,63	11,00	10,55	11,48	11,41	11,57	11,11
N1-N2-C7"-C1"	173,53	171,57	171,30	170,98	171,89	171,31	170,86	171,59
N1-N2-C7"-O7"	-8,44	-10,00	-10,49	-10,73	-9,78	-10,42	-10,98	-9,97
N2- C7"- C1"- C6"	-28,23	7,16	19,63	16,99	4,38	17,40	2,85	18,95
C7" - C1" - C2" - C3"	153,15	177,99	179,85	179,84	178,87	179,91	178,96	179,61
C7"-C1"-C6"-C5"	-179,35	-178,55	179,63	179,78	-179,13	179,70	-179,18	179,83
O7"- C7"- C1"- C2"	-24,83	8,90	-20,31	17,75	6,17	18,15	4,87	19,92
O7"- C7"- C1"- C6"	153,78	-171,21	-158,52	-161,24	-173,89	-160,82	-175,24	-159,44
C1"- C2"- C3"- C4"	-0,71	1,16	0,74	0,58	0,60	0,57	0,52	0,47
C2'' - C3'' - C4'' - C5''	-0,26	0,20	0,23	0,28	0,16	0,24	0,16	0,25
C3"-C4"-C5"-C6"	-0,71	-0,78	-0,67	-0,59	-0,42	-0,56	-0,39	-0,43
C4'' - C5'' - C6'' - C1''	-0,20	-0,01	0,14	0,04	-0,07	0,06	-0,04	-0,11
C7"-C1"-C2"-O2"	/	-1,86	/	/	-1,02	/	-0,95	/
C4"-C3"-C2"-O2"	/	-178,98	/	/	-179,50	/	-179,56	/
C6"-C1"-C2"-O2"	/	178,24	/	/	-179,66	/	179,16	/
C2"-C3"-C4"-O4"	/	/	179,80	179,81	/	179,78	179,78	179,63
C6"-C5"-C4"-O4"	/	/	179,73	179,88	/	179,90	179,98	-179,84
C1"-C2"-C3"-O3"	/	/	/	-179,59	-179,66	-179,55	-179,74	-179,69
C5"-C4"-C3"-O3"	/	/	/	-179,57	-179,58	-179,64	-179,59	-179,61
C1"-C6"-C5"-O5"	/	/	/	/	/	/	/	-179,41
C3'' - C4'' - C5'' - O5''	/	/	/	/	/	/	/	178.87

Slika P3. ¹HNMR spektar za jedinjenje CBH1

Slika P5. ¹HNMR spektar za jedinjenje CBH2

Slika P6. ¹³CNMR spektar za jedinjenje CBH2

Slika P15. ¹HNMR spektar za jedinjenje CBH7

Slika P17. ¹HNMR spektar za jedinjenje CBH8

Slika P18. ¹³CNMR spektar za jedinjenje CBH8

Slika P19. Eksperimentalni (plava linija) i teorijski (narandžasta linija) UV-Vis spektri jedinjenja CBH1-CBH8, dobijeni pomoću B3LYP-D3BJ/6-311++G(d,p)

Slika P20. Raspodela negativnog naelektrisanja u okviru anjonskih vrsta nastalih iz CBH1-CBH9

		,			1			(P	<i>, , , , , , , , , ,</i>		
		HAT	SET	-PT	SP	LET	HAT	SET	-PT	SPL	ET
		$\Delta r G$ hat	$\Delta rGSET$	$\Delta r G_{PT}$	$\Delta rGSPL$	$\Delta rGet$	$\Delta r G hat$	$\Delta rGSET$	$\Delta r G_{PT}$	$\Delta rGSPL$	$\Delta rGet$
				Metanol					Benzen		
					•OCH ₃						
CBH1	N2H	-76	229	-305	-149	72	-77	410	-488	-204	127
CDLIA	N2H	-82	222	-315	-169	87	-86	410	-504	-229	143
CBH2	C2"-OH	-44	233	-277	-93	50	-32	417	-450	-133	101
CDUD	N2H	-80	222	-302	-148	68	-86	402	-489	-204	118
СБПЗ	C4"-OH	-53	222	-276	-120	66	-51	403	-454	-171	120
CDI 14	N2H	-81	227	-308	-145	64	-86	402	-488	-203	117
CDTI4	C4"-OH	-61	227	-288	-103	41	-57	402	-459	-157	100
	N2H	-79		-268	-171	92	-83		-506	-233	150
CBH5	С2"-ОН	-75	190	-264	-113	38	-60	424	-484	-157	97
	С3"-ОН	-79		-262	-104	32	-58		-482	-146	88
	N2H	-77		-286	-148	71	-84		-502	-206	122
CBH6	C3"-OH	-85	209	-294	-122	37	-86	418	-504	-179	93
	C4"-OH	-83		-293	-132	48	-84		-503	-192	107
	N2H	-80		-278	-165	85	-84		-482	-224	140
CPU7	C2"-OH	-59	109	-256	-108	50	-46	200	-444	-156	110
CDTI/	C3"-OH	-86	190	-284	-112	26	-75	390	-473	-158	84
	C4"-OH	-65		-262	-111	46	-91		-489	-263	172
	N2H	-76		-283	-143	67	-82		-496	-205	123
CBUQ	C3"-OH	-81	207	-287	-125	45	-46	414	-494	-179	99
CDI 10	C4"-OH	-102	207	-309	-141	39	-75	414	-517	-204	102
	C5"-OH	-79		-286	-122	44	-91		-490	-176	99
CBH9	N2H	-78	251	-329	-149	71	-85	407	-492	-209	124
					•OCH ₂ CH	H 3	-				
CBH1	N2H	-73	232	-305	-148	75	-74	408	-482	-198	124
CBH2	N2H	-79	236	-314	-168	90	-83	415	-498	-224	140
CDIIL	C2"-OH	-40	200	-276	-93	52	-29	110	-444	-127	98
CBH3	N2H	-77	224	-301	-147	70	-83	400	-483	-198	115
CDIIO	C4"-OH	-50		-275	-119	69	-48	100	-448	-166	117
CBH4	N2H	-78	229	-307	-144	67	-83	400	-483	-197	114
	C4"-OH	-58		-287	-102	44	-54	100	-453	-151	97
	N2H	-76		-268	-170	94	-80		-501	-227	148
CBH5	C2"-OH	-72	192	-263	-112	40	-57	421	-478	-152	94
	C3"-OH	-69		-261	-104	34	-55		-476	-141	86
CBH6	N2H	-74	-	-286	-147	73	-81		-497	-200	119
CDIIO	C3"-OH	-82	212	-294	-121	39	-83	416	-499	-173	90
	C4"-OH	-80		-292	-131	51	-81		-497	-186	105
	N2H	-77	-	-277	-164	87	-81	-	-476	-218	138
CBH7	C2"-OH	-55	200	-256	-107	52	-43	395	-438	-151	108
	C3"-OH	-83		-283	-111	28	-72		-467	-153	81
	C4"-OH	-62		-262	-110	49	-88		-483	-257	169
	N2H	-73	4	-282	-142	70	-79		-490	-200	121
CBH8	C3"-OH	-78	209	-287	-125	47	-77	411	-488	-173	97
	C4"-OH	-99		-308	-141	42	-100		-511	-199	99
ļ	C5"-OH	-76		-285	-122	46	-73		-485	-170	97
CBH9	N2H	-75	253	-328	-148	73	-82	404	-486	-203	121

Tabela P6. Termodinamički parametri koji opisuju HAT, SET-PT i SPLET mehanizam inaktivacije metoksi i etoksi radikala pomoću **CBH1-CBH9** (kJ mol⁻¹),

	, ,	НАТ	SET	-PT	SP	UET I	HAT	SET	-PT	SPL	ET
		$\Delta r G HAT$	ΔrGset	$\Delta r G_{PT}$	$\Delta rGSPL$	ΔrGet	ΔrGhat	$\Delta rGSET$	ΔrGpt	ΔrGspl	ΔrGet
				Metanol					Benzen		
					•OCH(CH	3)2					
CBH1	N2H	-80	225	-305	-148	69	-81	398	-479	-195	114
CDUID	N2H	-85	220	-315	-169	83	-90	105	-495	-221	130
CBH2	C2"-OH	-47	230	-277	-93	46	-36	405	-441	-124	88
CDUD	N2H	-84	010	-302	-148	64	-90	200	-480	-195	105
СВНЗ	C4"-OH	-57	218	-275	-120	63	-55	390	-445	-163	108
CDUIA	N2H	-85	222	-307	-145	61	-90	200	-480	-194	104
CBH4	C4"-OH	-65	223	-288	-103	38	16	390	-450	-148	88
	N2H	-83		-268	-171	88	-87		-498	-225	138
CBH5	C2"-OH	-78	186	-264	-112	34	-64	411	-475	-149	85
	C3"-OH	-76		-262	-104	28	-62		-473	-138	76
	N2H	-81		-286	-148	67	-88		-494	-197	109
CBH6	C3"-OH	-89	206	-294	-122	33	-90	406	-496	-171	81
	C4"-OH	-87		-293	-131	45	-88		-494	-183	95
	N2H	-84		-278	-165	81	-88		-473	-215	128
CDU	C2"-OH	-62	104	-256	-108	46	-50	205	-435	-148	98
CBH2	C3"-OH	-90	194	-284	-112	22	-79	385	-464	-150	71
	C4"-OH	-68		-262	-111	43	-95		-480	-254	159
	N2H	-80		-283	-143	63	-86		-488	-197	111
CDU	C3"-OH	-84	202	-287	-125	41	-84	102	-485	-170	87
СВН8	C4"-OH	-106	203	-309	-141	36	-107	402	-508	-196	89
	C5"-OH	-82		-285	-122	40	-80		-482	-167	87
CBH9	N2H	-82	247	-329	-149	67	-89	394	-483	-200	111
					•OC(CH3)3		•			
CBH1	N2H	-84	225	-309	-152	68	-86	394	-480	-196	110
CRU2	N2H	-90	220	-319	-173	83	-95	401	-496	-221	126
CDFIZ	С2"-ОН	-50	229	-281	-97	45	-41	401	-442	-125	85
CPU2	N2H	-88	210	-306	-152	63	-94	206	-481	-196	102
СВПЗ	C4"-OH	-62	210	-279	-124	62	-60	300	-446	-163	104
CBH4	N2H	-89	222	-311	-149	60	-95	286	-481	-195	101
	C4"-OH	-69	222	-292	-106	37	-65	360	-451	-149	84
	N2H	-87		-272	-175	88	-91		-499	-225	134
CBH5	C2"-OH	-83	185	-268	-116	33	-69	407	-476	-150	81
	C3"-OH	-80		-265	-108	28	-67		-474	-138	72
CBU6	N2H	-85		-290	-151	66	-93		-494	-198	105
CDI10	C3"-OH	-93	205	-298	-126	33	-94	402	-496	-171	77
	C4"-OH	-91		-296	-135	44	-93		-495	-184	91
	N2H	-88		-281	-169	81	-92		-474	-216	124
CBH7	C2"-OH	-67	193	-260	-112	45	-54	382	-436	-148	94
CDIII	C3"-OH	-94	175	-288	-116	21	-83	502	-465	-151	67
	C4"-OH	-73		-266	-115	42	-100		-481	-255	155
	N2H	-84		-286	-147	63	-90	ļ	-488	-197	107
CBH8	C3"-OH	-89	202	-291	-129	40	-88	398	-486	-171	83
	C4"-OH	-110	202	-312	-145	35	-111	570	-509	-196	85
	C5"-OH	-87		-289	-126	39	-85		-483	-168	83
CBH9	N2H	-86	247	-333	-153	67	-93	391	-484	-201	107

Tabela P7. Termodinamički parametri koji opisuju HAT, SET-PT i SPLET mehanizam inaktivacije izopropiloksi i *terc*-butoksi radikala pomoću **CBH1-CBH9** (kJ mol⁻¹)

	,	1	1			1				,	
		HAT	SET	-PT	SP	LET	HAT	SET	-PT	SPL	ET
		$\Delta r G$ hat	$\Delta rGSET$	$\Delta r G_{PT}$	$\Delta rGSPL$	$\Delta rGet$	$\Delta r G hat$	$\Delta rGSET$	$\Delta r G_{PT}$	$\Delta rGSPL$	$\Delta rGet$
				Metanol					Benzen		
					•OOCH	3					
CBH1	N2H	4	265	-261	-104	108	2	447	-444	-161	163
CDUID	N2H	-1	2(0	-271	-124	123	-7	120	-461	-186	179
CBH2	C2"-OH	37	269	-232	-49	86	48	439	-406	-90	137
CRU2	N2H	0	259	-258	-103	103	-6	420	-445	-161	154
СБПЗ	C4"-OH	27	258	-231	-75	102	29	439	-411	-128	156
CDI 14	N2H	-1	2(2	-263	-101	100	-6	451	-445	-160	153
CDF14	C4"-OH	19	262	-243	-58	77	16	451	-416	-114	137
	N2H	1		-224	-126	128	-3		-463	-190	187
CBH5	C2"-OH	6	225	-220	-68	74	19	460	-441	-114	133
	C3"-OH	8		-217	-60	68	22		-438	-103	125
	N2H	3		-242	-103	106	-4		-459	-162	158
CBH6	C3"-OH	-5	245	-250	-77	73	-6	455	-461	-136	130
	C4"-OH	-3		-248	-87	84	-5		-459	-149	144
	N2H	0		-233	-121	121	-4		-438	-181	177
CDU	C2"-OH	22		-212	-64	85	34		-400	-113	147
CBH7	C3"-OH	-6	233	-239	-67	62	5	434	-430	-115	120
	C4"-OH	16		-218	-66	82	-11		-446	-220	208
	N2H	4		-238	-98	103	-2		-453	-162	160
	С3"-ОН	0		-243	-81	80	0		-451	-136	136
CBH8	C4"-OH	-22	242	-264	-97	75	-23	451	-474	-161	138
	С5"-ОН	1		-241	-78	79	3		-447	-132	136
CBH9	N2H	2	287	-285	-105	107	-5	443	-449	-165	160
	1				•OOCH ₂ C	H3					
CBH1	N2H	4	269	-266	-109	113	3	449	-446	-162	165
	N2H	-2		-276	-129	129	-6		-462	-187	181
CBH2	C2"-OH	36	274	-237	-54	90	48	456	-408	-91	139
	N2H	0		-263	-108	108	-5		-447	-162	156
СВНЗ	C4"-OH	26	262	-236	-80	107	29	441	-412	-129	159
CBH4	N2H	-1	2/7	-268	-106	105	-6		-446	-161	155
	C4"-OH	19	267	-248	-63	82	24	441	-417	-115	139
	N2H	1		-229	-131	132	-2		-460	-191	189
CBH5	C2"-OH	5	230	-225	-73	78	20	462	-462	-115	136
	С3"-ОН	8		-222	-65	72	22		-461	-104	127
	N2H	3		-247	-108	111	-4		-464	-164	160
CBH6	C3"-OH	-5	250	-255	-82	77	-5	457	-442	-137	132
	C4"-OH	-3		-253	-92	89	-4		-440	-150	146
	N2H	0		-238	-126	125	-3		-440	-182	179
CDU	C2"-OH	21		-217	-69	90	35		-402	-114	149
CBH7	C3"-OH	-6	238	-244	-72	66	6	436	-431	-116	122
	C4"-OH	15	1	-223	-71	87	-11	1	-447	-221	210
	N2H	4		-243	-103	107	-3		-440	-182	179
CBH8	C3"-OH	-1	1	-248	-86	85	1	1	-452	-137	138
	C4"-OH	-22	247	-269	-102	80	-22	453	-475	-162	140
	C5"-OH	1	1	-246	-83	84	4	1	-449	-134	138
CBH9	N2H	2	291	-290	-110	111	-4	445	-450	-167	162

Tabela P8. Termodinamički parametri koji opisuju HAT, SET-PT i SPLET mehanizam inaktivacije metilperoksi i etilperoksi radikala pomoću **CBH1-CBH9** (kJ mol⁻¹)

)	1		1				/		
		HAT	SET	-PT	SPI	LET	HAT	SET	-PT	SPL	.ET
		$\Delta r G$ hat	$\Delta rGSET$	$\Delta r G_{PT}$	$\Delta rGSPL$	$\Delta r Get$	$\Delta r G hat$	$\Delta rGSET$	$\Delta r G_{PT}$	$\Delta rGSPL$	$\Delta rGet$
				Metanol					Benzen		
					•OOCH=C	CH2					
CBH1	N2H	-11	219	-230	-73	62	-11	391	-403	-119	108
CDLIA	N2H	-17	222	-240	-94	77	-20	200	-419	-144	124
CBH2	C2"-OH	22	223	-202	-18	40	34	399	-365	-48	82
CDLIA	N2H	-15	010	-227	-73	58	-20	204	-404	-119	101
СВНЗ	C4"-OH	12	212	-200	-45	56	15	384	-369	-86	99
CDI 14	N2H	-16	217	-233	-70	54	-20	202	-403	-118	98
CDH4	C4"-OH	4	217	-213	-28	31	9	383	-374	-72	81
	N2H	-14		-193	-96	82	-17		-421	-148	131
CBH5	С2"-ОН	-10	180	-189	-37	28	6	405	-399	-72	78
	C3"-OH	-7		-187	-29	22	8		-397	-61	69
	N2H	-12		-211	-73	61	-18		-417	-121	103
CBH6	C3"-OH	-20	199	-219	-47	27	-20	399	-419	-94	74
	C4"-OH	-18		-218	-56	38	-18		-418	-107	89
	N2H	-15		-203	-90	75	-18		-397	-139	122
CDUT	С2"-ОН	7	100	-181	-33	40	20	270	-359	-71	92
CDH/	C3"-OH	-21	188	-209	-37	16	-9	379	-388	-73	65
	C4"-OH	0		-187	-36	36	-25		-404	-178	153
	N2H	-11		-208	-68	57	-16		-411	-120	105
CDUM	C3"-OH	-16	107	-212	-50	35	-14	205	-409	-94	80
Срно	C4"-OH	-37	197	-234	-66	29	-37	393	-432	-119	83
	C5"-OH	-14]	-210	-47	34	-10		-406	-91	80
CBH9	N2H	-13	241	-254	-74	61	-19	388	-407	-124	105

Tabela P9. Termodinamički parametri koji opisuju HAT, SET-PT i SPLET mehanizam inaktivacije vinil-peroksi radikala pomoću **CBH1-CBH9** (kJ mol⁻¹)

,											
		HAT	SET	-PT	SP	LET	HAT	SET	-PT	SPI	LET
		$\Delta r G$ hat	$\Delta rGSET$	$\Delta r G_{PT}$	$\Delta rGSPL$	$\Delta rGet$	$\Delta r G hat$	ΔrG_{SET}	$\Delta r G_{PT}$	$\Delta rGSPL$	$\Delta rGet$
				Metanol					Benzen		
					Cl ₂ CHOC)•					
CBH1	N2H	-29	172	-201	-45	15	-29	336	-365	-81	52
CDUID	N2H	-35	170	-211	-65	30	-39	242	-381	-106	68
CBH2	C2"-OH	3	176	-173	11	-7	16	343	-327	-10	26
CDLIA	N2H	-33	175	-198	-44	11	-38	220	-366	-81	43
СБПЗ	C4"-OH	-7	165	-171	-16	9	-3	328	-331	-48	45
CDI 14	N2H	-34	1(0	-182	-41	-46	-38	227	-366	-80	42
CDFI4	C4"-OH	-15	169	-184	1	28	-9	327	-336	-34	25
	N2H	-32		-164	-67	35	-35		-384	-110	75
CBH5	С2"-ОН	-28	132	-160	-9	-19	-12	349	-361	-35	22
	С3"-ОН	-25		-158	0	-25	-10		-359	-24	13
	N2H	-30		-182	-44	13	-36		-380	-83	47
CBH6	C3"-OH	-38	152	-190	-18	-20	-38	343	-382	-56	18
	C4"-OH	-36		-189	-28	-9	-36		-380	-69	33
	N2H	-33		-174	-61	28	-36		-359	-101	66
CPU7	C2"-OH	-12	1.41	-152	-4	-8	2	222	-321	-34	36
CD11/	C3"-OH	-39	141	-180	-8	-31	-27	323	-350	-36	9
	C4"-OH	-18		-158	-7	-11	-43		-366	-140	97
	N2H	-29		-179	-39	10	-34		-373	-83	49
СВН8 С	C3"-OH	-34	140	-183	-21	-13	-32	220	-371	-56	24
	C4"-OH	-55	149	-205	-37	-18	-55	339	-394	-82	27
	C5"-OH	-32		-182	-18	-14	-28		-368	-53	24
CBH9	N2H	-31	194	-225	-45	14	-37	332	-369	-86	49
		-			Cl ₃ COO	•					
CBH1	N2H	-32	150	-182	-25	-7	-31	308	-339	-56	24
CBH2	N2H	-38	154	-192	-46	8	-41	315	-356	-81	40
CDTIZ	C2"-OH	0	104	-154	30	-29	47	010	-301	15	-2
CBH3	N2H	-36	143	-179	-25	-12	-40	300	-340	-55	15
CDIIO	C4"-OH	-10	140	-152	3	-13	-5	500	-305	-23	18
CBH4	N2H	-37	147	-311	-22	-15	-40	300	-340	-55	14
	C4"-OH	-17	117	-165	20	-38	-11	500	-311	-9	-2
	N2H	-35		-145	-48	13	-37		-358	-85	48
CBH5	C2"-OH	-31	110	-141	11	-41	-15	300	-336	-9	-5
	C3"-OH	-28		-139	19	-47	-12		-333	2	-14
CBH6	N2H	-33	-	-163	-25	-9	-40		-354	-57	19
CDIIO	C3"-OH	-41	130	-171	1	-42	-39	316	-356	-31	-9
	C4"-OH	-39		-170	-8	-31	-38		-354	-43	5
	N2H	-36	-	-155	-42	6	-38		-333	-76	38
CBH7	C2"-OH	-15	118	-133	15	-30	0	295	-295	-8	8
CDIII	C3"-OH	-42	110	-161	11	-53	-29	270	-324	-10	-19
	C4"-OH	-21		-139	12	-33	-45		-341	-115	69
	N2H	-32	-	-160	-20	-12	-36		-348	-57	21
CBH8	C3"-OH	-37	127	-164	-2	-35	-34	312	-346	-31	-3
	C4"-OH	-58		-186	-18	-40	-57		-369	-56	-1
	С5"-ОН	-35		-162	1	-36	-31		-342	-27	-3
CBH9	N2H	-34	172	-206	-26	-8	-39	304	-344	-60	21

Tabela P10. Termodinamički parametri koji opisuju HAT, SET-PT i SPLET mehanizam inaktivacije dihlormetilperoksi i trihlormetilperoksi radikala pomoću **CBH1-CBH9** (kJ mol⁻¹)

0.071

0≈

HN⁻^NH

0.094

0

0.068

0.065

0.053

0.085

.OMe

OMe

0.075

0.075

0

0

0

n

HN^{-NH}

0.080

0

O

0

Ш

O

HN⁻NH

0.089

он

0.053

0.053

Slika P21. Fukui indeksom predviđeni položaji za radikalski napad na CBH1-CBH9

	Jedinjenje	Pozicija	Metanol	Benzen		Jedinjenje	Pozicija	Metanol	Benzen
		C5″	-19,7	-17,8			C5″	86,4	51,4
	CBH1	C6″	-37,0	-38,2		CBH1	C6″	71,3	36,3
		C7	-28,3	-29,1			C7	71,5	46,5
		C5″	-24,2	-23,3			C5″	85,7	87,2
	CBH2	C6″	-53,2	-57,4		CBH2	C6″	83,4	67,1
		C7	-32,3	-34,5			C7	79,0	85,8
		C5″	-32,2	-34,5			C5″	75,0	85,7
	СВНЗ	C6″	-38,1	-42,1		СВНЗ	C6″	81,2	83,4
		C7	-33,1	-35,6			C7	76,2	84,3
но•		C5″	-23,2	-25,5			C5″	89,9	93,6
	CBH4	C6″	-51,8	-55,5		CBH4	C6″	59,2	68,1
		C7	-29,1	-33,6	НОО•		C7	69,7	90,8
HO	СВН5	C5″	-21,0	-21,5		СВН5	C5″	88,0	94,2
		C6″	-64,6	-70,6			C6″	79,2	53,3
		C7	-30,1	-30,3			C7	79,7	89,8
		C5″	-23,7	-29,0	-		C5″	104,5	97,5
	CBH6	C6″	-48,1	-54,2		CBH6	C6″	80,8	75,0
		C7	-29,1	-31,2			C7	95,2	91,5
		C5″	-21,0	-21,5			C5″	98,0	91,2
	CBH7	C6″	-48,1	-54,2		CBH7	C6″	64,5	57,5
		C7	-30,1	-30,3			C7	91,4	84,6
	CPUP	C6″	-56,1	-57,6		CPUP	C6″	58,7	16,9
	CDI10	C7	-28,4	-27,1		CDI10	C7	64,5	57,7
	CBH0	C6″	-48,9	-57,2		CBH0	C6″	56,4	13,0
	CD119	C7	-16,2	-23,0		CDI19	C7	90,9	47,5

Tabela P11. Termodinamički parametri koji opisuju RAF mehanizam inaktivacije hidroksi i hidroperoksi radikala pomoću **CBH1-CBH9** (kJ mol⁻¹)

C7

31,7

26,2

C7

43,6

38,2

	etoksi radikala pomocu Com-Com (kji mor)								
	Jedinjenje	Pozicija	Metanol	Benzen		Jedinjenje	Pozicija	Metanol	Benzen
		C5″	31,2	25,2			C5″	38,9	33,2
	CBH1	C6″	12,6	7,1		CBH1	C6″	23,0	17,2
		C7	23,5	17,9			C7	27,2	21,5
		C5″	25,4	23,0			C5″	30,1	28,4
	CBH2	C6″	-1,5	0,4		CBH2	C6″	11,2	5,3
		C7	17,9	15,5			C7	21,1	19,9
		C5″	19,3	16,9			C5″	23,4	21,6
	СВНЗ	C6″	18,9	11,7		СВНЗ	C6″	23,0	16,7
		C7	17,7	12,0			C7	22,2	17,3
		C5″	28,5	24,7			C5″	36,2	30,0
СИ О:	CBH4	C6″	6,0	0,6		CBH4	C6″	15,0	4,7
		C7	20,6	17,5			C7	24,9	24,9
CH ₃ O•		C5″	27,1	25,3	CH3CH2O*	СВН5	C5″	35,7	29,8
	CBH5	C6″	-9,3	-13,8			C6″	-5,0	-10,4
		C7	20,5	16,1			C7	22,6	21,5
		C5″	26,7	23,8			C5″	33,8	29,4
	CBH6	C6″	6,9	2,9		CBH6	C6″	13,8	1,3
		C7	17,9	14,0			C7	27,2	21,3
		C5″	29,7	24,2			C5″	34,0	28,4
	CBH7	C6″	-3,4	-9,0		CBH7	C6″	5,1	-0,5
		C7	21,1	15,5			C7	40,8	35,1
	CDU	C6″	2,3	-3,3]	CDU	C6″	15,6	10,0
	СВН8	C7	24,3	18,5	1	Свня	C7	38,8	33,2
	CRUG	C6″	4,5	-1,1	1	CRUG	C6″	10,9	5,3
	CBH9	07	01 5	26.2	1	CBH9	07	10 (20.2

Tabela P12. Termodinamički parametri koji opisuju RAF mehanizam inaktivacije metoksi i etoksi radikala pomoću **CBH1-CBH9** (kI mol⁻¹)

Tabela P13. Termodinamički parametri koji opisuju RAF mehanizam inaktivacije izoprop	vi-
loksi i <i>terc</i> -butoksi radikala pomoću CBH1-CBH9 (kI mol ⁻¹)	

	Jedinjenje	Pozicija	Metanol	Benzen		Jedinjenje	Pozicija	Metanol	Benzen
		C5″	32,4	26,7			C5″	35,1	29,6
	CBH1	C6″	16,0	10,2		CBH1	C6″	26,0	20,2
		C7	30,3	24,9			C7	26,5	21,0
		C5″	33,0	29,4			C5″	30,8	26,1
	CBH2	C6″	6,7	2,4		CBH2	C6″	17,6	13,3
		C7	23,8	16,8			C7	35,7	39,8
		C5″	19,5	18,1			C5″	38,0	32,6
	СВНЗ	C6″	23,1	16,0		СВНЗ	C6″	33,0	26,1
		C7	17,3	13,2			C7	32,8	30,7
		C5″	35,3	28,9			C5″	47,8	36,4
	CBH4	C6″	12,4 6,8		CBH4	C6″	23,4	16,4	
		C7	23,0	16,6			C7	43,9	39,3
(CH3)2CHO		C5″	37,6	33,1	(CH3)3CU ²		C5″	49,5	44,9
	CBH5	C6″	-6,8	-10,8		CBH5	C6″	2,4	-0,1
		C7	25,4	19,1			C7	35,5	38,0
		C5″	27,4	27,3			C5″	44,7	42,6
	CBH6	C6″	12,1	0,8		CBH6	C6″	16,9	18,1
		C7	21,8	18,2			C7	41,4	37,2
		C5″	30,3	24,5			C5″	50,8	45,3
	CBH7	C6″	-1,5	-7,3		CBH7	C6″	9,5	4,0
		C7	19,6	13,8			C7	38,0	32,5
	CRUS	C6″	7,8	2,1		CDU	C6″	19,3	13,8
	CDII0	C7	29,3	23,5		CDII0	C7	24,5	19,6
	CPU	C6″	7,0	1,2		CPU	C6″	74,1	67,2
	CDITY	C7	43,2	37,5		СБПУ	C7	104,8	97,9

Tabela P14. Termodinamički parametri koji opisuju RAF mehaniz	am inaktivacije metil-
peroksi i etilperoksi radikala pomoću CBH1-CBH9 (kJ mol ⁻¹)

	Jedinjenje	Pozicija	Metanol	Benzen		Jedinjenje	Pozicija	Metanol	Benzen
		C5″	98,7	91,9			C5″	96,2	89,6
	CBH1	C6″	84,3	77,2		CBH1	C6″	83,5	76,8
		C7	93,2	86,2			C7	84,4	77,0
		C5″	95,7	87,4			C5″	91,0	85,9
	CBH2	C6″	73,4	67,5		CBH2	C6″	72,6	62,6
		C7	89,0	85,7			C7	91,8	90,1
		C5″	85,0	85,6			C5″	92,6	88,8
	СВНЗ	C6″	91,2	83,3		СВНЗ	C6″	90,3	82,1
		C7	86,2	84,3			C7	91,7	88,1
		C5″	99,9	93,5	CH3CH2OO•	CBH4	C5″	85,4	80,3
	CBH4	C6″	59,2	68,1			C6″	79,5	71,5
CLL OOL		C7	89,7	90,7			C7	96,2	92,6
CH300*		C5″	98,0	94,2			C5″	94,0	92,1
	CBH5	C6″	59,2	53,6		CBH5	C6″	62,6	51,6
		C7	89,7	89,8			C7	92,0	92,1
		C5″	104,5	97,0			C5″	88,6	86,8
	CBH6	C6″	80,8	75,0		CBH6	C6″	79,8	70,9
		C7	95,2	91,2			C7	94,5	92,9
		C5″	98,0	91,2			C5″	98,7	91,3
	CBH7	C6″	64,5	57,7		CBH7	C6″	67,9	61,2
		C7	91,4	84,6			C7	94,9	88,3
	CBU9	C6″	71,8	65,0		CBU9	C6″	71,9	65,3
	Свня	C7	92,0	85,5	1	Свня	C7	96,0	89,3
	CRU0	C6″	74,1	67,5]	CBUO	C6″	73,4	66,7
	Свня	C7	104,8	97,9		Свна	C7	104,3	97,7

Tabela P15. Termodinamički parametri koji opisuju RAF mehanizam inaktivacije vini	i1-
peroksi i hlormetilperoksi radikala pomoću CBH1-CBH9 (kl mol ⁻¹)	

	Jedinjenje	Pozicija	Metanol	Benzen		Jedinjenje	Pozicija	Metanol	Benzen
		C5″	90,6	85,1			C5″	68,4	61,3
	CBH1	C6″	72,3	66,7		CBH1	C6″	58,5	51,5
		C7	79,1	73,5			C7	62,2	55,7
		C5″	83,4	82,8			C5″	86,9	81,0
	CBH2	C6″	63,7	59,2		CBH2	C6″	66,4	67,1
		C7	73,9	72,6			C7	56,7	60,7
		C5″	82,8	81,7			C5″	86,4	76,6
	СВНЗ	C6″	78,6	72,5		СВНЗ	C6″	82,8	82,4
		C7	74,6	73,2			C7	61,5	56,0
		C5″	87,8	84,8			C5″	95,5	92,5
	CBH4	C6″	68,6	61,9		CBH4	C6″	70,2	60,1
		C7	74,7	82,0			C7	67,7	72,6
CH2=CHOO*		C5″	86,0	85,0	CICH200*		C5″	92,7	81,8
	CBH5	C6″	48,7	44,3		CBH5	C6″	57,0	47,8
		C7	74,3	75,1			C7	61,1	67,8
		C5″	86,6	79,7			C5″	88,8	85,4
	CBH6	C6″	72,2	63,1		CBH6	C6″	78,0	64,0
		C7	78,1	77,5			C7	74,1	63,4
		C5″	87,7	82,1			C5″	89,6	82,4
	CBH7	C6″	52,9	47,3		CBH7	C6″	60,6	53,4
		C7	76,4	70,8			C7	69,1	61,9
	CDIIO	C6″	60,8	55,3		CDIR	C6″	51,3	44,1
	CDII0	C7	82,2	76,7		CDII0	C7	74,0	66,8
	CPU0	C6″	61,5	55,8		CPU	C6″	53,7	46,5
	CDH9	C7	91,9	86,2		СБНУ	C7	82,6	75,5

	Jedinjenje	Pozicija	Metanol	Benzen		Jedinjenje	Pozicija	Metanol	Benzen
		C5″	63,6	57,1			C5″	60,6	58,1
	CBH1	C6″	52,5	46,2		CBH1	C6″	46,2	43,5
		C7	64,5	58,3			C7	54,3	51,7
		C5″	64,8	55,5			C5″	51,6	60,7
	CBH2	C6″	45,9	42,0		CBH2	C6″	35,6	33,7
		C7	64,3	61,1			C7	49,0	49,8
		C5″	54,0	60,7			C5″	56,1	57,9
	СВНЗ	C6″	65,5	60,6		СВНЗ	C6″	51,3	56,1
		C7	63,4	62,7			C7	55,1	55,4
		C5″	62,8	63,5		CBH4	C5″	63,4	53,9
	CBH4	C6″	48,7	43,4			C6″	43,8	40,6
CLCUOO!		C7	69,3	60,2	CLCOO!		C7	54,9	59,5
CI2CHOU*		C5″	63,7	69,8	CI3COO*		C5″	54,9	58,6
	CBH5	C6″	30,2	24,2		CBH5	C6″	22,7	19,4
		C7	65,6	57,2			C7	48,9	61,8
		C5″	68,1	67,2			C5″	53,9	56,4
	CBH6	C6″	55,7	51,3		CBH6	C6″	40,4	43,5
		C7	71,0	65,2			C7	55,0	54,8
		C5″	60,0	54,7			C5″	61,1	58,7
	CBH7	C6″	39,6	33,5		CBH7	C6″	27,1	24,5
		C7	66,9	61,3			C7	58,0	55,3
	CBU9	C6″	40,3	34,2		CBU9	C6″	33,1	30,4
	СБНо	C7	64,5	58,7		Свно	C7	54,3	51,1
	CDU0	C6″	47,4	41,4		CBUA	C6″	34,1	31,5
	Свну	C7	74,0	68,2		CBH9	C7	64,9	62,2

Tabela P16. Termodinamički parametri koji opisuju RAF mehanizam inaktivacije dihlor	me-
tilperoksi i trihlormetilperoksi radikala pomoću CBH1-CBH9 (kJ mol ⁻¹)	

Tabela P17. Vrednosti apsorbancijee za **CBH1** na 340 i 370 nm talasne dužine sa promenom pH

pН	Apsorbancija (340 nm)	Apsorbancija (370 nm)
2,5	0,1390	0,0479
4,0	0,1648	0,0574
5,5	0,2267	0,1896
7,0	0,5312	0,8381
8,5	0,6045	0,9885
9,5	0,5005	0,8007
10,5	0,4929	0,7874

Slika P22. Dijagram koji predstavlja odnos apsorbanci na različitim pH

Slika P23. Vrednosti apsorbance za CBH1 na 370 nm talasne dužine pri različitim pH, za određivanje pKa vrednosti

Slika P24. Eksperimentalni UV-Vis spektar puferskog rastvora CBH1 pri pH = 8,4 (puna linija) i simulirani spektar vodenog rastvora 4HCB1⁻ (isprekidana linija)

Slika P25. Prelazna stanja koja se pojavljuju u antiradikalskim reakcionim putevima CBH1

Slika P26. Prelazna stanja koja se pojavljuju u antiradikalskim reakcionim putevima CBH1-

Slika P27. Prelazna stanja koja se pojavljuju u antiradikalskim reakcionim putevima CBH1·

Slika P28. Zavisnost ln*k*_{ZCT-0} (zeleno) i ln*k*_{TST} (ljubičasto) od recipročne temperature za reakcije CBH1 i CBH1[•] sa •OH

Slika P29. Reakciona koordinata reakcije nastajanja radikal anjona CBH1^{•-} iz CBH1[•] i ⁻OH, Vrednosti na apscisi predstavljaju distancu između vodonika NH grupe i kiseonika iz ⁻OH izražene u Å, Na ordinati se nalaze energije u Hartrijima (Hartree)

Slika P30. NBO naelektrisanje (crveno) i raspodela gustine spina (plavo) u reaktantima hipotetičke HAA reakcije CBH1⁻ + \cdot OH $\rightarrow \cdot$ CB1⁻ + H2O

Slika P31. Struktura reakcionog kompleksa na razdaljini na kojoj se dešava inverzija spina (16), Struktura između tripletnog i singletnog stanja

Slika P32. Eksperimentalni UV-Vis spektri rastvora (pH = 8,4) CBH1 Pre (crna linija) i posle Fentonove reakcije (ljubičasta linija)

Slika P33. Fluorescentni emisioni spektri HSA uz prisustvo različitih koncentracija **CBH9** (T = 296 K, pH = 7,4), Početna koncentracija [**HSA**] = 2 μM; Koncentracija **CBH9** se kretala između [L]= 0–5 μM, Inset: grafik zavisnosti of (F₀-F)/F on [Q] – Stern-Volmerovi dijagrami gašenja fluorescencije za **HSA-CBH9** na 310 K

Slika P34. Grafici zavisnosti log[(F0-F)/F] prema log[Q] na različitim temperaturama 296 (gore), 303 (centralno), i 310 (dole) K

Slika P35. Van't Hoffov dijagram ilustruje interakciju između HSA i **CBH9** na različitim temperaturama: 296 K, 303 K i 310 K, Ovaj dijagram pruža grafički prikaz odnosa između temperature i termodinamičkih parametara interakcije HSA-**CBH9**

Slika P36. Rg vrednosti koje opisuju interakcije varfarina i CBH9 sa HSA, Crvenom bojom predstavljen je varfarin dok su zelenom i ljubičastom predstavljeni CBH9 i HSA

Slika P37. RMSF vrednosti koje opisuju interakcije varfarina i **CBH9** sa HSA, Crvenom bojom predstavljen je varfarin dok su zelenom i ljubičastom predstavljeni **CBH9** i **HSA**

Slika P38. RMSD vrednosti koje opisuju interakcije varfarina i CBH1-CBH8 sa HSA, Crvenom bojom predstavljen je varfarin dok su zelenom predstavljeni CBH1-CBH8

Slika P39. RMSF vrednosti koje opisuju interakcije varfarina i CBH1-CBH8 sa HSA, Crvenom bojom predstavljen je varfarin dok su zelenom predstavljeni CBH1-CBH8

Slika P40. Rg vrednosti koje opisuju interakcije varfarina i CBH1-CBH8 sa HSA, Crvenom bojom predstavljen je varfarin dok su zelenom predstavljeni CBH1-CBH8

SPISAK SLIKA I ŠEMA:

Slika 1.1. Ilustrovani prikaz elektron transportnog lanca sa komponentama zaduženim za proces oksidativne fosforilacije na membrani mitohondrije u eukariotskoj ćeliji. Kompleks I predstavlja *NADPH dehidrogenazu*, Kompleks II *sukcinat dehidrogenazu*, Kompleks III *citohrom bc1 kompleks*, a Kompleks IV *citohrom c oksidazu*. *ATP sintaza* predstavlja poseban deo lanca koji se u nekoj literaturi naziva i Kompleks V

Slika 1.2. Struktura α -tokoferola – najaktivnijeg oblika vitamina E

Slika 1.3. Strukture nekih značajnih jedinjenja iz grupe flavonoida

Slika 1.4. Struktura benzoeve (levo) i cimetne (desno) kiseline

Slika 1.5. Struktura 3,4,5–trihidroksibenzoeve (levo) i 2,3,4-trihidroksibenzoeve (desno) kiseline

Slika 1.6. Kaktus pejotlu i meskalin – halucinogeni alkaloid izolovan iz ovog kaktusa

Slika 1.7. Struktura eudesminske kiseline i list eukaliptusa iz koga je izolovana

Slika 1.8. Struktura 3,4–dihidroksibenzoeve (levo) 2,3–dihidroksibenzoeve (centar) i vanilinske (desno) kiseline

Slika 1.9. Struktura salicilne kiseline (levo), aspirina (desno)

Slika 1.10. *Coumarouna odorata* – plod biljke iz kog je izolovan kumarin (levo), struktura izolovanog kumarina (desno)

Slika 1.11. Struktura dikumarola

Slika 1.12. Struktura poznatih furanokumarina: bergapten (levo) i psoralen (desno)

Slika 1.13. Struktura ferprenina

Slika 1.14. Struktura skopoletina, kumarina koji se nalazi u duvanu i kajsiji

Slika 1.15. Struktura acenokumarola (levo) i etil kumarin-3-karboksilata (desno)

Slika 1.16. Struktura fraksetina (levo) i eskuletina (desno)

Slika 1.17. Struktura umbeliferona (levo) i 4-hidroksikumarina (desno)

Slika 1.18. Struktura kompleksa kumarina sa Pd(II) jonima

Slika 1.19. Struktura varfarina, poznatog antikoagulatnog agensa

Slika 1.20. Struktura fenprokumona

Slika 1.21. Prikaz 2D (levo) i 3D (desno) strukture 2,2-difenil-1-pikrilhidrazil radikala (DPPH•)

Slika 1.22. Markusova teorija zasnovana na dva parabolična dijabatska potencijala $V_{R}(q)$ i $V_{P}(q)$ reaktanata i proizvoda

Slika 2.1. 2D struktura (*E*)-*N*'-(1-(2,4-dioksoohroman-3-iliden)etil)-3,4,5-trimetoksibenzo hidrazida – **CBH9**

Slika 3.1. Kristalna struktura **CBH9** sa numerisanim atomima. Intramolekulska vodonična veza prikazana je pomoću isprekidane linije

Slika 3.2. Optimizovana geometrija CBH9 (B3LYP-D3BJ/6-311G++(d,p))

Slika 3.3. Superpozicija RMSD vrednosti izračunatih duž MD trajektrorije (100 ns) u gasnoj fazi (plava) i vodi (narandžasta)

Slika 3.4. A) Reprezentativni klasteri gasne faze, sa najzastupljenijom geometrijom prikazanom plavom bojom; B) Reprezentativni klasteri rastvarača, sa najzastupljenijom geometrijom prikazanom narandžastom bojom; C) Superpozicija između najzastupljenijom geometrijom u gasnoj fazi (plava) i vodi (narandžasta); D) Superpozicija između najreprezentativnijeg konformera ekstrapolisanog iz simulacije u vodi (narandžasta) i DFT/B3LYP optimizovane geometrije u vodi (cijan).

Slika 3.5. Eksperimentalni (crvena linija) i simulirani IR spektri (B3LYP-D3BJ (crna linija), M06-2X (plava linija) i APF-D (žuta linija))

Slika 3.6. Eksperimentalni (crvena linija) i simulirani UV-Vis spektri (B3LYP-D3BJ (crna linija), M06-2X (plava linija) i APF-D (žuta linija)); na levoj strani grafika prikazane su vrednosti apsorbance dok se na desnoj strani očitavaju oscilatorne jačine; *označava maksimume oscilatorne jačine

Slika 3.7. Elektronski prelazi i HOMO LUMO uključene u pomenute prelaze

Slika 3.8. Optimizovane geometrije CBH1-CHB8

Slika 3.9. Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-311++G(d,p)/gas) vibracioni spektar za **CBH1-CHB4.** Brojevi na x-osi predstavljaju talasnu dužinu (λ) izraženu u nm

Slika 3.10. Eksperimentalni (crna linija) i teorijski (crvena linija, B3LYP-D3BJ/6-311++G(d,p)) vibracioni spektar za **CBH5-CHB8**. Brojevi na x-osi predstavljaju talasnu dužinu (λ) izraženu u nm

Slika 3.11. Delokalizacija spinske gustine CBH1•-CBH9•.

Slika 3.12. Optimizovane strukture ispitivanih radikalskih vrsta

Slika 3.13. Spektri elektronske paramagnetne rezonance DEPMPO-HO[•] generisanog u Fentonovoj reakciji na 7.4 (levo) i 8.4 (desno) sa (crvena) i bez (crna linija) **CBH1**.

Slika 3.14. UV-Vis spekri CBH1, pri različitim pH vrednostima

Slika 3.15. Odnos između apsorpcije i pH CBH1 u puferskim rastvorima pH 2,5–10,5

Slika 3.16. Optimizovane geometrije odabranih prelaznih stanja u antioksidativnim mehanizmima **CBH1** u alkalnom rastvoru. Prelazna stanja za RAF mehanizam u poziciji C5 sa različitim hemijskim vrstama **CBH1**

Slika 3.17. Energetski profil za RRC reakciju **CBH1**[•] i •OH u N" poziciji u singletnom i tripletnom stanju (plave i zelene linije). SCP označava tačku ukrštanja spina, RC za reakcioni kompleks i TS za prelazno stanje

Slika 3.18. Eksperimentalni UV-Vis spektar **CBH1** nakon Fentonove reakcije (ljubičasta linija) i predviđeni UV-Vis spektar **CBH–OH** (plava linija).

Slika 3.19. Uticaj ispitivanih jedinjenja **CBH7** (narandžasta boja) i **CBH8** (crvena boja) na redoks status HCT-116 ćelijske linije nakon 24 h: koncentracija $O_2^{\bullet-}$ izražena u nmol/ml po broju živih ćelija. Prikazani podaci su srednje vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na netretirane ćelije)

Slika 3.20. Uticaj ispitivanih jedinjenja **CBH7** (narandžasta boja) i **CBH8** (crvena boja) na redoks status HCT-116 ćelijske linije nakon 24 h: koncentracija MDA izražena u nmol/ml po broju živih ćelija. Prikazani podaci su srednje vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na netretirane ćelije)

Slika 3.21. Uticaj ispitivanih jedinjenja **CBH7** (narandžasta boja) i **CBH8** (crvena boja) na redoks status HCT-116 ćelijske linije nakon 24 h: koncentracija GSH izražena u nmol/ml po broju živih ćelija. Prikazani podaci su srednje vrednosti dva nezavisna eksperimenta (*p < 0,05 u odnosu na netretirane ćelije)

Slika 3.22. Spektri emisije fluorescencije HSA uz prisustvo različitih koncentracija ispitivanog jedinjenja (T = 296 K, pH = 7,4). Početna koncentracija je bila [HSA] = 2 μ M; Koncentracija ispitivanog jedinjenja bila je u opsegu od 0–5 μ M. Umetak: Grafička zavisnost (F₀-F)/F od [Q] – Štern-Folmerovi dijagrami gašenja fluorescencije HSA sa ispitivanim jedinjenjem na 296 K

Slika 3.23. Interakcije ispitivanog jedinjenja (levo) i varfarina (desno) unutar Sudlow I aktivnog mesta HSA. Zelena boja predstavlja vodonične veze, ružičasta π -alkil dok ljubičasta predstavlja π -sigma interakcije

Slika 3.24. Dijagram koji predstavlja RMSD vrednosti za ispitivane sisteme u vremenskom okviru od 100 ns Slika 3.25. Interakcije **CBH1-CHB9** i **CBH–OH** unutar Sudlow I aktivnog mesta HSA. Zelena boja predstavlja vodonične veze, ružičasta π -alkil dok ljubičasta predstavlja π -sigma interakcije. Crvena boja prestavlja interakcije koje ometaju vezivanje za HSA, dok zlatne prestavljaju π -anjon interakcije

Slika 3.26. Dijagram koji predstavlja RMSD vrednosti za ispitivane sisteme (**WF–HSA** i **CBH–OH– HSA**) u vremenskom okviru od 100 ns

Slika 3.27. Dijagram koji predstavlja RMSF vrednosti za ispitivane sisteme (**WF–HSA** i **CBH–OH–HSA**) u vremenskom okviru od 100 ns

Slika 3.28. Dijagram koji predstavlja Rg vrednosti za ispitivane sisteme (WF–HSA i CBH–OH–HSA) u vremenskom okviru od 100 ns

Šema 1.1. Reakcija inaktivacije radikalske vrste u prisustvu kiseonika pomoću anjona askorbinske kiseline — nastanak askorbil-radikala

Šema 1.2. Klasifikacija fenolnih jedinjenja

Šema 1.3. Klasifikacija kumarinskih derivata na osnovu hemijske strukture [58-61]

Šema 1.4. Podela različitih metoda za određivanje antioksidativnog kapaciteta

Šema 1.5. Reakcioni mehanistički putevi koje prate reakcije antioksidativne i antiradikalske aktivnosti

Šema 1.6. Reakcioni mehanistički putevi koje prate inaktivaciju radikala pomoću antioksidanata do formiranja neutralne; RAF-HAA i HAA-RRC mehanizam

Šema 2.1. Sinteza 3-acetil-4-hidroksi-2*H*-hromen-2-on – (3AHC)

Šema 2.2. Sinteza benzoilhidrazidskih derivata BH1-BH9

Šema 2.3. Sinteza benzohidrazidskih derivata 4-hidroksikumarina (CBH1-CBH9)

Šema 3.1. Sveukupan mehanizam antiradikalske aktivnosti **CBH1** prema HO• u alkalnom rastvoru. Plava struktura predstavlja **CBH–OH** , dok crvena struktura predstavlja **CB**

SPISAK TABELA:

Tabela 2.1. Osnovni kristalografski podaci za CBH9

Tabela 3.1. Dužine veza određene eksperimentalno i teorijski za CBH9

Tabela 3.2. Vrednosti τ , ϱ , θ diedarskih uglova za 10 reprezentativnih konformera dobijenih iz MD simulacija. Ilustrativni prikaz τ , ϱ , θ dat je u tabeli

Tabela 3.3. Eksperimentalne i teorijski određene vrednosti hemijskih pomeranja u ¹H NMR spektrima **CBH9**

Tabela 3.4. Eksperimentalne i teorijski određene vrednosti hemijskih pomeranja u ¹³C NMR spektrima **CBH9**

Tabela 3.5. Eksperimentalne i teorijske vrednosti talasnih dužina λ (nm), oscilatorne jačine (*f*) i elektronski prelazi za **CBH9**

Tabela 3.6. Dužina veza CBH1-CBH4 dobijene pomoću B3LYP-D3BJ/6-311++G(d,p)

Tabela 3.7. Dužina veza CBH5-CBH8 dobijene pomoću B3LYP-D3BJ/6-311++G(d,p)

Tabela 3.8. Eksperimentalne i teorijske vrednosti hemijskih pomeranja (δ) za **CBH1-CBH4** u ¹HNMR spektrima

Tabela 3.9. Eksperimentalne i teorijske vrednosti hemijskih pomeranja za **CBH5-CBH8** u ¹HNMR spektrima

Tabela 3.10. Eksperimentalne i teorijske vrednosti hemijskih pomeranja za **CBH1-CBH4** u ¹³CNMR spektrima

Tabela 3.11. Eksperimentalne i teorijske vrednosti hemijskih pomeranja za **CBH5-CBH8** u ¹³CNMR spektrima

Tabela 3.12. H-L (eV) – parametar koji opisuje reaktivnost ispitivanih jedinjenja na osnovu energija HOMO i LUMO (eV)

Tabela 3.13. Antiradikalski kapacitet novosintetisanih **CBH1-CBH9**; Inaktivacija DPPH• (%) pri različitim koncentracijama i vremenskim intervalima

Tabela 3.14. Antiradikalski kapacitet novosintetisanih **CBH1-CBH9**; Inaktivacija ABTS^{•+} (%) pri različitim koncentracijama i vremenskim intervalima. FRAP test

Tabela 3.15. Termodinamički parametri koji opisuju antioksidativni potencijal **CBH1-CBH9** (kJ mol⁻¹)

Tabela 3.16. Termodinamčki parametri inaktivacije hidroksi radikala pomoću CBH1-CBH9

Tabela 3.17. Termodinamički parametri koji opisuju HAT, SET-PT i SPLET mehanizam inaktivacije hidroperoksi i hlormetilperoksi radikala pomoću **CBH1-CBH9** (kJ mol⁻¹)

Tabela 3.18. Vrednosti apsorpcije **CBH1** na 370 nm u pH opsegu 2,5–11,6 i pKa vrednosti određene korišćenjem vrednosti apsorpcije pri odgovarajućem pH (8,4–8,7)

Tabela 3.19. Promene Gibsove slobodne energije $\Delta_r G$ (kJ mol⁻¹) reakcija **CBH1** i **CBH1**⁻ sa HO[•]. Energije aktivacije ΔG_a^{\ddagger} (kJ mol⁻¹) i konstante brzine k (M⁻¹s⁻¹) za sve termodinamički povoljne puteve reakcije

Tabela 3.20. Promene Gibsove slobodne energije ΔrG (kJ mol⁻¹) reakcija **CBH1** sa HO[•]. Energije aktivacije ΔG_a^{\neq} (kJ mol⁻¹) i konstante brzine k (M⁻¹s⁻¹) za sve termodinamički povoljne puteve reakcije **Tabela 3.21.** Predviđena toksičnost ispitivanih jedinjenja **CBH1-CBH9** kao i **CBH–OH.** Radi boljeg razumevanja dobijenih vrednosti LD⁵⁰, kao standardi su korišćeni varfarin, eskuletin, kvercetin i etanol.

Tabela 3.22. DL i biodostupnost

Tabela 3.23. Fizičko-hemijski parametri biodostupnosti ispitivanih jedinjenja

Tabela 3.24. Predviđeni farmakokinetički parametri dobijeni pomoću ADMETlab 2.0 i validirani pomoću SwissADME servera (*iskošeno kada se razlikuje od ADMETlab 2.0*)

Tabela 3.25. Štern-Folmerove konstante gašenja (K_{sv}), konstante brzine gašenja (k_q), konstante vezivanja (K_b) i broj mesta vezivanja (n) su određene za interakciju **CBH9** sa HSA

Tabela 3.26. Važni termodinamički parametri **HSA-CBH9** na različitim temperaturama (296, 303, 310 K)

Tabela 3.27. Termodinamički parametri koji opisuju vezivanje CBH1-CBH9 za HSA

Publikovani radovi u kojima su prezentovani rezultati doktorske disertacije:

- <u>Marko Antonijević</u>, Dušica Simijonović, Edina Avdović, Andrija Ćirić, Zorica Petrović, Jasmina Dimitrić-Marković, Višnja Stepanić, Zoran Marković, Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency, *Antioxidants*, 10, 1106, 2021. ISSN: 2076-3921, DOI: 10.3390/antiox10071106.
- Marko Antonijević, Edina Avdović, Dušica Simijonović, Žiko Milanović, Ana Amić, Zoran Marković, Radical Scavenging Activity and Pharmacokinetic Properties of Coumarin-Hydroxybenzohydrazide Hybrids, *International Journal of Molecular Sciences* 23(1), 490, 2022. ISSN: 1422-0067, DOI: 10.3390/ijms23010490.
- Marko Antonijević, Edina Avdović, Dušica Simijonović, Žiko Milanović, Milan Žižić, Zoran Marković, Investigation of novel radical scavenging mechanisms in the alkaline environment: Green, sustainable and environmentally friendly antioxidative agent(s). *Science of The Total Environment*, 169307, 2023. ISSN: 0048-9697, DOI: 10.1016/j.scitotenv.2023.169307.

Article

Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency

Marko R. Antonijević ^{1,2}, Dušica M. Simijonović ¹,⁹, Edina H. Avdović ^{1,*}, Andrija Ćirić ², Zorica D. Petrović ², Jasmina Dimitrić Marković ³, Višnja Stepanić ⁴, and Zoran S. Marković ^{1,*}

¹ Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; mantonijevic@uni.kg.ac.rs (M.R.A.); dusicachem@kg.ac.rs (D.M.S.)

Abstract: Compounds from the plant world that possess antioxidant abilities are of special im-

- ² Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12,
- 34000 Kragujevac, Serbia; andrija.ciric@pmf.kg.ac.rs (A.Ć.); zorica.petrovic@pmf.kg.ac.rs (Z.D.P.)
 ³ Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; markovich@ffh.bg.ac.rs
- ⁴ Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; visnja.stepanic@irb.hr
- * Correspondence: edina.avdovic@pmf.kg.ac.rs (E.H.A.); zmarkovic@uni.kg.ac.rs (Z.S.M.); Tel.: +381-34-610-01-95 (Z.S.M.)

Citation: Antonijević, M.R.; Simijonović, D.M.; Avdović, E.H.; Ćirić, A.; Petrović, Z.D.; Marković, J.D.; Stepanić, V.; Marković, Z.S. Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency. *Antioxidants* **2021**, *10*, 1106. https://doi.org/10.3390/ antiox10071106

Academic Editors: Irene Dini and Domenico Montesano

Received: 7 June 2021 Accepted: 7 July 2021 Published: 10 July 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). portance for the food and pharmaceutical industry. Coumarins are a large, widely distributed group of natural compounds, usually found in plants, often with good antioxidant capacity. The coumarin-hydroxybenzohydrazide derivatives were synthesized using a green, one-pot protocol. This procedure includes the use of an environmentally benign mixture (vinegar and ethanol) as a catalyst and solvent, as well as very easy isolation of the desired products. The obtained compounds were structurally characterized by IR and NMR spectroscopy. The purity of all compounds was determined by HPLC and by elemental microanalysis. In addition, these compounds were evaluated for their in vitro antioxidant activity. Mechanisms of antioxidative activity were theoretically investigated by the density functional theory approach and the calculated values of various thermodynamic parameters, such as bond dissociation enthalpy, proton affinity, frontier molecular orbitals, and ionization potential. In silico calculations indicated that hydrogen atom transfer and sequential proton loss-electron transfer reaction mechanisms are probable, in non-polar and polar solvents respectively. Additionally, it was found that the single-electron transfer followed by proton transfer was not an operative mechanism in either solvent. The conducted tests indicate the excellent antioxidant activity, as well as the low potential toxicity, of the investigated compounds, which makes them good candidates for potential use in food chemistry.

Keywords: coumarins; green synthesis; antioxidants; DFT

1. Introduction

The oxygen molecule is an important electron acceptor in metabolic processes in the cells of living organisms. It plays an important role in the cell's respiratory processes, especially in a process of oxidative phosphorylation. This molecule is included in almost all electron transfer processes in organisms, and is one of the key components of the electron-transport chain, which has a crucial role in energy production [1]. However, besides its many positive effects, as a result of its bi-radical properties, it also enables the formation of partially reduced chemical species known as reactive oxygen species (ROS), which can be involved in starting a chain reaction that could be potentially dangerous for the cell [2]. The production of ROS in the organism is a natural process that allows the immune system to remove foreign bodies from blood, manages cell-signaling, leads to acceleration of the aging process, etc. ROS are constantly forming within the cells upon exposure to drugs, air pollutants, ultraviolet rays, ionizing radiation, smoke, and some

Antioxidants 2021, 10, 1106. https://doi.org/10.3390/antiox10071106

https://www.mdpi.com/journal/antioxidants

International Journal of Molecular Sciences

Radical Scavenging Activity and Pharmacokinetic Properties of Coumarin–Hydroxybenzohydrazide Hybrids

Marko R. Antonijević ^{1,2}⁽⁶⁾, Edina H. Avdović ¹, Dušica M. Simijonović ¹⁽⁶⁾, Žiko B. Milanović ¹⁽⁶⁾, Ana D. Amić ³ and Zoran S. Marković ^{1,*}

- ¹ Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; mantonijevic@uni.kg.ac.rs (M.R.A.); edina.avdovic@pmf.kg.ac.rs (E.H.A.); dusicachem@kg.ac.rs (D.M.S.); ziko.milanovic@uni.kg.ac.rs (Ž.B.M.)
- ² Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
- ³ Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, 31000 Osijek, Croatia; aamic@kemija.unios.hr
- Correspondence: zmarkovic@uni.kg.ac.rs; Tel.: +381-34-610-01-95

Abstract: Free radicals often interact with vital proteins, violating their structure and inhibiting their activity. In previous studies, synthesis, characterisation, and the antioxidative properties of the five different coumarin derivatives have been investigated. In the tests of potential toxicity, all compounds exhibited low toxicity with significant antioxidative potential at the same time. In this paper, the radical scavenging activity of the abovementioned coumarin derivatives towards ten different radical species was investigated. It was found that all investigated compounds show good radical scavenging ability, with results that are in correlation with the results published in the previous study. Three additional mechanisms of radical scavenging activity were investigated. It was found that all three mechanisms are thermodynamically plausible and in competition. Interestingly, it was found that products of the Double Hydrogen Atom Transfer (DHAT) mechanism, a biradical species in triplet spin state, are in some cases more stable than singlet spin state analogues. This unexpected trend can be explained by spin delocalisation over the hydrazide bridge and phenolic part of the molecule with a low probability of spin pairing. Besides radical-scavenging activity, the pharmacokinetic and drug-likeness of the coumarin hybrids were investigated. It was found that they exhibit good membrane and skin permeability and potential interactions with P-450 enzymes. Furthermore, it was found that investigated compounds satisfy all criteria of the drug-likeness tests, suggesting they possess a good preference for being used as potential drugs

Keywords: radical scavenging; antioxidants; coumarins; DFT; pharmacokinetics

1. Introduction

Around 40 years ago, Earl R. Stadtman initiated a research program to investigate the effect of free radicals on enzyme activity and protein turnover and developed methods for monitoring proteins modified by free radical species [1]. His results attracted an increasing number of investigators from various fields. It has been shown that free radicals and reactive oxygen species (ROS) have different roles in living organisms. Due to their nature and diversity, ROS are essential for the regulation of intercellular communication, metabolic processes, immune response to foreign bodies, etc. On the other hand, if they are being produced in excessive amounts, they cause damage to biomolecules in their surroundings. Continuous exposure of the cell to this type of damage causes various disorders that often result in mutations and cell death. Excessive production of ROS is often triggered by external factors such as different types of radiation, the presence of heavy metals, or some other type of changing the normal metabolic pathways in the cell, which causes the state known as oxidative stress (OS). OS is often defined as an imbalance between production

Int. J. Mol. Sci. 2022, 23, 490. https://doi.org/10.3390/ijms23010490

https://www.mdpi.com/journal/ijms

Citation: Antonijević, M.R.; Avdović, E.H.; Simijonović, D.M.; Milanović, Ž.B.; Amić, A.D.; Marković, Z.S. Radical Scavenging Activity and Pharmacokinetic Properties of Coumarin–Hydroxybenzohydrazide Hybrids. Int. J. Mol. Sci. 2022, 23, 490. https://doi.org/10.3390/ijms22010490

Academic Editor: Reinhard Dallinger

Received: 3 December 2021 Accepted: 28 December 2021 Published: 1 January 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

۲ (cc)

Copyright: © 2022 by the authors. Licensee MDPL, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Science of the Total Environment 912 (2024) 169307

journal homepage: www.elsevier.com/locate/scitotenv

Investigation of novel radical scavenging mechanisms in the alkaline environment: Green, sustainable and environmentally friendly antioxidative agent(s)

Marko Antonijević^{a,b}, Edina Avdović^b, Dušica Simijonović^b, Žiko Milanović^b, Milan Žižić^c, Zoran Marković^{b,d,e,*}

^a University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia

⁶ University of Kragujeva, Totani of potenta, requirement of orientary, requirement of Science, Jovana Crijića bb, 34000 Kragujevac, Serbia
 ⁶ University of Belgrade, Institute for Multidisciplinary Research, Life Science Separtment, Kneza Viseslava 1, 11030 Belgrade, Serbia
 ^d State University of Novi Pazar, Department of Natural Sciences and Mathematics, 36300 Vuka Karadžića, Novi Pazar, Serbia

^c University of Applied Sciences, Department of Engineering and Natural Sciences, Eberhard-Leibnitz-Straße 2, DE-06217 Merseburg, Germany

ABSTRACT

HIGHLIGHTS

alkaline pH

• Obtaining less toxic product in the reaction of coumarin-benzohydrazide with $^{\bullet}OH$ Investigation of reaction between [●]OH and a coumarin-benzohydrazide in the

• Combining natural compounds to enhance their antiradical activity Postulation of the novel mechanistic pathway of antiradical activity (SPLET-RRC)

GRAPHICAL ABSTRACT

ARTICLE INFO

Editor: Henner Hollert

Keywords: Hydroxyl radical Advanced oxidation processes Electron paramagnetic resonance Alkaline environment Coumarin

Pharmaceutical and industrial utilization of synthetic chemicals has an immerse impact on the environment. In that sense, novel chemicals with potential for industrial application should be investigated for their behaviour in reactions with hydroxyl radical, simulating **AOPs** (Advanced Oxidation Processes). AOPs are known for being highly effective in wastewater management and natural water remediation. In this paper, exhaustive research on the radical scavenging activity of a newly synthesized coumarin derivative (4HCBH), as a representative of the series of coumarin-benzohydrazides with high antioxidative potential was conducted. This study took into consideration the pH value range significant for practically all living organisms (pH = 7.0–8.5). According to the experimentally obtained results, the **4HCBH** showed an increase in radical scavenging activity, following the

* Corresponding author at: University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia. E-mail address: markovic@uni.kg.ac.rs (Z. Marković).

https://doi.org/10.1016/j.scitotenv.2023.169307

Received 20 September 2023; Received in revised form 20 November 2023; Accepted 10 December 2023 Available online 19 December 2023 0048-9697/© 2023 Elsevier B.V. All rights reserved.

BIOGRAFIJA

Marko R. Antonijević rođen je 26.05.1995. godine u Novom Pazaru. Gimnaziju, opšti smer, završio je 2014. godine u Novom Pazaru. Osnove akademske studije hemije završio je 08.07.2018. godine na Departmanu za hemijsko-tehnološke nauke, Državnog univerziteta u Novom Pazaru sa prosečnom ocenom 8,77 pod mentorstvom prof. dr Zorana Markovića. Na Državnom univerzitetu u Novom Pazaru je školske 2017/2018 bio angažovan kao "saradnik van radnog odnosa (demonstrator)" na predmetima: Računari u hemiji, Organska hemija 1, Organska hemija 2, Fizička hemija i Viša neorganska

hemija. Master akademske studije, završio je 2019. godine na Državnom univerzitetu u Novom Pazaru, sa prosečnom ocenom 10,00 pod mentorstvom prof. dr Zorana Markovića. Doktorske akademske studije upisao je školske 2019/2020 na Prirodnomatematičkom fakultetu u Kragujevcu i položio je sve planom i programom predviđene ispite sa prosečnom ocenom 10,00. Na Institutu za informacione tehnologije izabran je i za najboljeg mladog istraživača u 2021. godini, a nagradu za rad sa najvećim impakt faktorom dobio je 2022. godine. Trenutno je zaposlen na institutu za Informacione tehnologije, Univerziteta u Kragujevcu, u zvanju istraživala saradnika. Marko do sada ima 15 publikovanih naučnih radova objavljenih u istaknutim međunarodnim časopisima na SCI listi od čega šest radova u međunarodnim časopisima izuzetnih vrednosti (M21a), pet radova u vrhunskim međunarodnim časopisima (M21), dva rada u istaknutim međunarodnom časopisima (M22) i dva rada u međunarodnim časopisima (M23). Pored toga kandidat je objavio tri rada u časopisima međunarodnog značaja verifikovanog posebnom odlukom (M24) i jedan rad u časopisu nacionalnog značaja (M51). Takođe, Marko je autor i više od 35 radova publikovanih na nacionalnim i međunarodnim konferencijama.

ИЗЈАВА АУТОРА О ОРИГИНАЛНОСТИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Изјављујем да докторска дисертација под насловом:

"Антиоксидативни потенцијал новосинтетисаних бензохидразидских деривата 4хидроксикумарина"

представља оригинално ауторско дело настало као резултат сопственог истраживачког рада.

Овом Изјавом такође потврђујем:

- да сам једини аутор наведене докторске дисертације,
- да у наведеној докторској дисертацији *нисам извршио/ла повреду* ауторског нити другог права интелектуалне својине других лица,

У Крагујевцу, 31.01.2024. године,

потпис аутора

Образац 2

ИЗЈАВА АУТОРА О ИСТОВЕТНОСТИ ШТАМПАНЕ И ЕЛЕКТРОНСКЕ ВЕРЗИЈЕ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Изјављујем да су штампана и електронска верзија докторске дисертације под насловом:

"Антиоксидативни потенцијал новосинтетисаних бензохидразидских деривата 4хидроксикумарина"

истоветне.

У Крагујевцу, 31.01.2024. године,

потпис аутора

ИЗЈАВА АУТОРА О ИСКОРИШЋАВАЊУ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Ја, Антонијевић Марко,

Универзитетској библиотеци у Крагујевцу да начини два трајна умножена примерка у електронској форми докторске дисертације под насловом:

"Антиоксидативни потенцијал новосинтетисаних бензохидразидских деривата 4хидроксикумарина"

и то у целини, као и да по један примерак тако умножене докторске дисертације учини трајно доступним јавности путем дигиталног репозиторијума Универзитета у Крагујевцу и централног репозиторијума надлежног министарства, тако да припадници јавности могу начинити трајне умножене примерке у електронској форми наведене докторске дисертације путем *преузимања*.

Овом Изјавом такође

дозвољавам

не дозвољавам²

припадницима јавности да тако доступну докторску дисертацију користе под условима утврђеним једном од следећих *Creative Commons* лиценци:

1) Ауторство

(2))Ауторство - делити под истим условима

² Уколико аутор изабере да не дозволи припадницима јавности да тако доступну докторску дисертацију користе под условима утврђеним једном од *Creative Commons* лиценци, то не искључује право припадника јавности да наведену докторску дисертацију користе у складу са одредбама Закона о ауторском и сродним правима.

- 3) Ауторство без прерада
- 4) Ауторство некомерцијално
- 5) Ауторство некомерцијално делити под истим условима
- 6) Ауторство некомерцијално без прерада³

У Крагујевцу, 31.01.2024. године,

потпис аутора

³ Молимо ауторе који су изабрали да дозволе припадницима јавности да тако доступну докторску дисертацију користе под условима утврђеним једном од *Creative Commons* лиценци да заокруже једну од понуђених лиценци. Детаљан садржај наведених лиценци доступан је на: http://creativecommons.org.rs/